Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10520, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714765

RESUMO

The hemibiotrophic Basidiomycete pathogen Ganoderma boninense (Gb) is the dominant causal agent of oil palm basal stem rot disease. Here, we report a complete chromosomal genome map of Gb using a combination of short-read Illumina and long-read Pacific Biosciences (PacBio) sequencing platforms combined with chromatin conformation capture data from the Chicago and Hi-C platforms. The genome was 55.87 Mb in length and assembled to a high contiguity (N50: 304.34 kb) of 12 chromosomes built from 112 scaffolds, with a total of only 4.34 Mb (~ 7.77%) remaining unplaced. The final assemblies were evaluated for completeness of the genome by using Benchmarking Universal Single Copy Orthologs (BUSCO) v4.1.4, and based on 4464 total BUSCO polyporales group searches, the assemblies yielded 4264 (95.52%) of the conserved orthologs as complete and only a few fragmented BUSCO of 42 (0.94%) as well as a missing BUSCO of 158 (3.53%). Genome annotation predicted a total of 21,074 coding genes, with a GC content ratio of 59.2%. The genome features were analyzed with different databases, which revealed 2471 Gene Ontology/GO (11.72%), 5418 KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthologous/KO (25.71%), 13,913 Cluster of Orthologous Groups of proteins/COG (66.02%), 60 ABC transporter (0.28%), 1049 Carbohydrate-Active Enzymes/CAZy (4.98%), 4005 pathogen-host interactions/PHI (19%), and 515 fungal transcription factor/FTFD (2.44%) genes. The results obtained in this study provide deep insight for further studies in the future.


Assuntos
Arecaceae , Ganoderma , Genoma Fúngico , Doenças das Plantas , Sequenciamento Completo do Genoma , Ganoderma/genética , Sequenciamento Completo do Genoma/métodos , Doenças das Plantas/microbiologia , Arecaceae/microbiologia , Arecaceae/genética , Anotação de Sequência Molecular
2.
Artigo em Inglês | MEDLINE | ID: mdl-30714028

RESUMO

Here, we report the complete sequence of the mitochondrial (mt) genome of Ganoderma boninense that assembled as a single circular double-stranded DNA (dsDNA) of 86,549 bp with a G+C content of 26.81%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNA subunits, 4 hypothetical proteins, and 5 homing endonucleases.

3.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700132

RESUMO

Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24 Mb, 495 scaffolds, and 26,226 predicted coding sequences.

4.
PLoS One ; 8(11): e79042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244413

RESUMO

Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Azóis/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/fisiologia , Fusarium/metabolismo , Genes Bacterianos/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Fusarium/genética , Deleção de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA