Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
2.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
3.
J Anim Ecol ; 91(6): 1251-1265, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34741315

RESUMO

Woodpeckers and other excavators create most of the holes used by secondary cavity nesters (SCNs) in North American temperate mixedwood forests, but the degree to which excavators release SCNs from nest-site limitation is debated. Our goal was to quantify how excavators maintain the diversity and abundance of secondary cavity nesters in a temperate forest through the creation of tree cavities. We examined the short- and long-term (legacy) effects of excavators (principally woodpeckers, but also red-breasted nuthatches and black-capped chickadees) on forest biodiversity using longitudinal monitoring data (1,732 nest cavities, 25 sites, 16 years) in British Columbia, Canada. Sites with higher densities of excavator nests had more cavities available, higher species richness of SCNs and higher nest density of SCNs, indicating the importance of a standing stock of cavities. Years with higher nesting densities of excavators were followed by years with higher SCN diversity, indicating that the creation of nesting opportunities through fresh excavation releases SCNs from community-wide nest-site limitation. We also show that excavators leave a 'legacy' of biodiversity (species richness and abundance) at a site by accumulating cavities at rates faster than they become unusable by decay or destruction. By quantifying site-level effects of cavity excavation on the SCN community, our study highlights the key role of excavators as ecosystem engineers that maintain forest wildlife biodiversity.


Si, dans la forêt mixte tempérée d'Amérique du Nord, les pics et autres excavateurs créent la plupart des cavités utilisées par les cavernicoles secondaires (SCN), la question de savoir s'ils augmentent la disponibilité des sites de nidification des SCN reste ouverte. Notre objectif était d'évaluer et quantifier l'impact qu'ont les excavateurs lorsqu'ils creusent des cavités dans les arbres, sur la diversité et l'abondance de cavernicoles secondaires dans une forêt mixte tempérée. Nous avons examiné les effets des excavateurs (principalement les pics, mais aussi la sittelle à poitrine rousse et la mésange à tête noire) à court et à long terme (survivance), sur la biodiversité de la forêt en Colombie-Britannique, au Canada, en utilisant des données longitudinales de surveillance (1,732 cavités ressource, 25 sites, 16 ans). Les sites à plus fortes densités de nids d'excavateurs avaient une plus grande abondance en cavités disponibles, une richesse en espèce SCN plus élevée, et une plus forte densité de nids de SCN, ce qui montre l'importance des arbres à cavités utilisables, vivants ou morts sur pied. Les années à plus fortes densités de nids d'excavateurs étaient suivies par des années à plus fortes diversités d'espèces SCN, ce qui signifie que la disponibilité de sites de nidification à partir de nouveaux creusements augmente le potentiel de nidification des espèces SCN pour l'ensemble de la communauté qui en dépend. Nous démontrons aussi que, sur un site donné, les excavateurs laissent une 'survivance' de biodiversité (richesse en espèce et abondance) en formant des cavités à un taux plus élevé que le taux avec lequel ces dernières deviennent inutilisables suite à leur décomposition ou destruction. En quantifiant les effets du creusement de cavités au niveau de chaque site par rapport à la communauté des SCN, notre étude met en évidence le rôle clé des excavateurs comme ingénieurs de l'écosystème favorisant la diversité de la faune forestière.


Assuntos
Comportamento de Nidação , Passeriformes , Animais , Biodiversidade , Colúmbia Britânica , Ecossistema
4.
Nat Commun ; 11(1): 3215, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587246

RESUMO

Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics.


Assuntos
Bromelia , Ecossistema , Inundações , Água Doce , Animais , Biodiversidade , Biomassa , Mudança Climática , Secas , Cadeia Alimentar , Hidrologia , América do Sul
5.
Ecology ; 101(4): e02984, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31958151

RESUMO

There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of "safe ecosystem functioning" when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition.


Assuntos
Mudança Climática , Ecossistema , Animais , Secas , Invertebrados , Chuva
6.
J Anim Ecol ; 85(5): 1147-60, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27120013

RESUMO

Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation.


Assuntos
Organismos Aquáticos/fisiologia , Secas , Cadeia Alimentar , Comportamento Predatório , Chuva , Animais , Bromeliaceae/crescimento & desenvolvimento , Costa Rica , Ecossistema , Guiana Francesa , Porto Rico
7.
J Anim Ecol ; 77(6): 1153-61, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18624742

RESUMO

1. Theory predicting that populations with high maximum rates of increase (r(max)) will be less stable, and that metapopulations with high average r(max) will be less synchronous, was tested using a small protist, Bodo, that inhabits pitcher plant leaves (Sarracenia purpurea L.). The effects of predators and resources on these relationships were also determined. 2. Abundance data collected for a total of 60 populations of Bodo, over a period of 3 months, at six sites in three bogs in eastern Canada, were used to test these predictions. Mosquitoes were manipulated in half the leaves partway through the season to increase the range of predation rates. 3. Dynamics differed greatly among leaves and sites, but most populations exhibited one or more episodes of rapid increase followed by a population crash. Estimates of r(max) obtained using a linear mixed-effects model, ranged from 1 x 5 to 2 x 7 per day. Resource levels (captured insect) and midge abundances affected r(max). 4. Higher r(max) was associated with greater temporal variability and lower synchrony as predicted. However, in contrast to expectations, populations with higher r(max) also had lower mean abundance and were more suppressed by predators. 5. This study demonstrates that the link between r(max) and temporal variability is key to understanding the dynamics of populations that spend little time near equilibrium, and to predicting and interpreting the effects of community structure on the dynamics of such populations.


Assuntos
Amoeba/fisiologia , Animais , Dinâmica Populacional , Sarraceniaceae/fisiologia , Fatores de Tempo
8.
Ecol Appl ; 16(6): 2276-92, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205904

RESUMO

The continental shelf ecosystem on the Eastern Scotian Shelf (ESS) has experienced drastic changes. Once common top predators are a small fraction of their historical abundance, and much of the current community structure is now dominated by pelagic fishes and invertebrates. Embedded within this food web, Atlantic cod and gray seal populations have recently exhibited nearly opposite trends. Since 1984, cod populations have decreased exponentially at a rate averaging 17% per year, whereas gray seals have continued to increase exponentially at a rate of 12%. We reexamined the impact of gray seals on Atlantic cod dynamics using more than 30 years of data on the population trends of cod and gray seals while incorporating new information on seal diet and seasonal distribution. The closure of the cod fishery over 10 years ago allowed for a better estimation of natural mortality rates. We quantified the impact of seals on ESS cod by (1) estimating trends in seal and cod abundance, (2) estimating the total energy needed for seal growth and maintenance from an energetics model, (3) using estimates of the percentage of cod in the total diet derived from quantitative fatty acid signature analysis (QFASA) and of the size-specific selectivity of cod consumed (derived from otoliths collected from fecal samples), and (4) assuming a gray seal functional response. Uncertainties of the model estimates were calculated using the Hessian approximation of the variance-covariance matrix. Between 1993 and 2000, cod comprised, on average, < 5% of a gray seal's diet. Our model shows that, since the closure of the fishery, gray seals have imposed a significant level of instantaneous mortality (0.21), and along with other unknown sources of natural mortality (0.62), are contributing to the failure of this cod stock to recover.


Assuntos
Gadus morhua , Focas Verdadeiras , Animais , Feminino , Masculino , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório , Focas Verdadeiras/fisiologia
9.
Trends Ecol Evol ; 19(7): 379-84, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16701289

RESUMO

Several recent, high-impact ecological studies feature natural microcosms as tools for testing effects of fragmentation, metacommunity theory or links between biodiversity and ecosystem processes. These studies combine the microcosm advantages of small size, short generation times, contained structure and hierarchical spatial arrangement with advantages of field studies: natural environmental variance, 'openness' and realistic species combinations with shared evolutionary histories. This enables tests of theory pertaining to spatial and temporal dynamics, for example, the effects of neighboring communities on local diversity, or the effects of biodiversity on ecosystem function. Using examples, we comment on the position of natural microcosms in the roster of ecological research strategies and tools. We conclude that natural microcosms are as versatile as artificial microcosms, but as complex and biologically realistic as other natural systems. Research to date combined with inherent attributes of natural microcosms make them strong candidate model systems for ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA