RESUMO
Giant magnetoelectric coupling and magnetic-field-induced spin state trapping (MIESST) were recently reported in spin crossover materials with polar phases. We discuss these phenomena considering the distinct contributions of the change of the molecular spin state, driven by the magnetic field, and the coupled structural symmetry-breaking during the stepwise change of electric polarisation or MIESST.
RESUMO
Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.
RESUMO
The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)2]NO3·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while T1/2 = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.
RESUMO
A dinuclear metallacycle assembled from a bispyridyl dithienylethene linker and a highly anisotropic dysprosium based Single Molecule Magnet (SMM) shows magnetic hysteresis at 1.8 K together with photoisomerization in single crystals (SC). The impact of photoswitching on the SMM behavior is evidenced and related to the specific organization of the magnetic units.
RESUMO
The switching properties of a cyanido-bridged Fe/Co square molecule were investigated by single-crystal X-ray diffraction and X-ray absorption spectroscopy at both Fe and Co K-edges. Combining these two techniques, a complete picture of the thermal-, light- and X-ray-induced metal-to-metal electron transfer is obtained, illustrating the concerted role played by the Fe and Co sites.
RESUMO
Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque, or highly scattering.
RESUMO
Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc â Pc â P1 â P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc â P1 and P1 â P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1â P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.
RESUMO
A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74â K and 84â K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14â T with an onset below 5â T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombicâmonoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.
RESUMO
We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.
RESUMO
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250â K, involves the space group change CcâPc and is thermodynamically continuous, while the second, PcâP1 at 85â K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.
RESUMO
A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γ HS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) â HS2/3LS1/3 (state 2) â HS1/2LS1/2 (state 3) â HS1/3LS2/3 (state 4) â HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2}·xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interpenetrated 3D frameworks via PhNO2-3,8phen intermolecular recognition and is the source of the strong elastic frustration responsible for the multi-step regime. Detailed X-ray single crystal analysis reflects competition between spatial periodicities of structurally inequivalent HS and LS SCO centres featuring: (i) symmetry breaking (state 3) with â¯HS-LS⯠ordering with γ HS = 1/2; and (ii) occurrence of spatial modulation of the structure providing evidence for stabilization of local or aperiodic ordered mixed spin states for states 2 and 4 (with γ HS ≈ 2/3) and 4 (with γ HS ≈ 1/3), respectively. Below c.a. 20 K, structural and magnetic analyses show the photogeneration of a metastable HS*, state 6. The room-temperature single-step hysteretic regime appears with release of the guest (x = 0, 1) and the elastic frustration, and reversibly switches back to the original four-step behaviour upon guest re-adsorption. Both uncommon relevant SCO events meeting in the same material represent a rare opportunity to compare them in the frame of antiferro- and ferro-elastic transitions.
RESUMO
A one-dimensional coordination solid 1c is synthesized by reaction of a bispyridyl dithienylethene (DTE) photochromic unit with the highly anisotropic dysprosium-based single-molecule magnet [Dy(Tppy)F(pyridine)2]PF6. Slow magnetic relaxation characteristics are retained in the chain compound 1c, and photoisomerization of the bridging DTE ligand induces a single-crystal-to-single-crystal transformation that can be monitored using photocrystallography. Notably, the resulting chain compound 1o exhibits faster low-temperature relaxation than that of 1c, which is apparent in magnetic hysteresis data collected for both compounds as high as 4 K. Ab initio calculations suggest that this photomodulation of the magnetic relaxation behavior is due to crystal packing changes rather than changes to the crystal field splitting upon ligand isomerization.
RESUMO
Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo-) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS-HS] to a [LS-HS] phase with a hysteresis of 25â K. Photoexcitation at low temperature allows access to a [LS-LS] phase, never observed at thermal equilibrium. As well as reporting the first iron(III) spin crossover complex to exhibit reverse-LIESST (light-induced excited spin state trapping), we also reveal a hidden hysteresis of 30â K between the hidden [LS-LS] and [HS-LS] phases. Moreover, we demonstrate that FeIII spin-crossover (SCO) complexes can be just as effective as FeII systems, and with the advantage of being air-stable, they are ideally suited for use in molecular electronics.
RESUMO
Molecule-based spin state switching materials that display ambient temperature transitions with accompanying wide thermal hysteresis offer an opportunity for electronic switching, data storage, and optical technologies but are rare in existence. Here, we present the first 2D Hofmann-type materials to exhibit the elusive combination of ambient temperature spin crossover with wide thermal hysteresis (ΔT = 50 and 65 K). Combined structural, magnetic, spectroscopic, and theoretical analyses show that the highly cooperative transition behaviours of these layered materials arise due to strong host-host interactions in their interdigitated lattices, which optimises long-range communication pathways. With the presence of water molecules in the interlayer pore space in the hydrated phases, competing host-host and host-guest interactions occur, whilst water removal dramatically increases the framework cooperativity, thus affording systematic insight into the structural features that favour optimal spin crossover properties.
RESUMO
A series of bulky substituted bipyridine-related iron(II) complexes [Fe(H2Bpz2)2(L)] (pz = pyrazolyl) were prepared, where L = 5,5'-dimethyl-2,2'-bipyridine (bipy-CH3, 1), L = dimethyl-2,2'-bipyridyl-5,5'-dicarboxylate (MeObpydc, 2), L = diethyl-2,2'-bipyridyl-5,5'-dicarboxylate (EtObpydc, 3), or L = diisopropyl-2,2'-bipyridine-5,5'-dicarboxylate ( i-PrObpydc, 4). The crystal structures of five new iron(II) complexes were determined by X-ray diffraction: those of 1, 3, and 4 and two modifications of 3 (3B) and 4 (4B). Complexes 1 and 3B display incomplete spin crossover (SCO) behavior because of a freezing-in effect, whereas 3 and 4B undergo gradual and incomplete SCO behaviors. Complexes 2 and 4 show a completely gradual and steep SCO, respectively. Such different SCO behaviors can be attributed to an electronic substituent effect in the bipyridyl ligand conformation and a crystal packing effect. Importantly, the electronic substituent effect of the isopropyl acetate group and C-H···O supramolecular interactions in 4 contribute to a highly cooperative behavior, which leads to an abrupt thermally induced spin transition.
RESUMO
Spin-transition compounds are coordination complexes that can present two stable or metastable high-spin and low-spin states at a given temperature (thermal hysteresis). The width of the thermal hysteresis (difference between the maximum and minimum temperature between which the compound exhibits bi-stability) depends on the interactions between the coordination complexes within the compound, and which may be modulated by the absence or presence of solvent within the structure. The new compound [Fe(3-bpp)2 ][Au(CN)2 ]2 (1, 3-bpp=2,6-di-(1H-pyrazol-3-yl)pyridine) was synthesized and its properties were compared with those of the solvated compound [Fe(3-bpp)2 ][Au(CN)2 ]2 â 2 H2 O (1.H2 O) already described. 1 has a two-steps thermal hysteresis of 45â K, in contrast to the compound 1.H2 O which exhibits a gradual conversion without hysteresis. This hysteretic transition is accompanied by a reversible reconstructive structural transition and twinning. This stepped behaviour is also observed in the photomagnetic properties despite the low efficiency of photoswitching. Single-crystal photocrystallographic investigations confirm this low conversion, which we attributed to the high energy cost to form the high-spin structure, whose symmetry differs from that of the low-spin phase.
RESUMO
A mixed-valence conducting cation radical salt of the unsymmetrically substituted o-Me2TTF donor molecule (TTF is tetrathiafulvalene) was obtained upon electrocrystallization in the presence of the non-centrosymmetric NO3- anion. It crystallizes at room temperature in the monoclinic P21/c space group, with the anion disordered on an inversion centre. The donor molecules are stacked along the a axis. A 90° rotation of the longest molecular axis of o-Me2TTF generates a chessboard-like structure, preventing lateral Sâ¯S contacts between stacks and providing a strongly one-dimensional electronic system, as confirmed by overlap interaction energies and band structure calculations. A strong dimerization within the stacks explains the semi-conducting behaviour of the salt, with σroom temp = 3-5â Sâ cm-1 and Eactivated = 0.12-0.14â eV. An X-ray diffuse scattering survey of reciprocal space, combined with full structure resolutions at low temperatures (250, 85 and 20â K), evidenced the succession of two structural transitions: a ferroelastic one with an anion-ordering (AO) process and the establishment of a (0, ½, ½) superstructure below 124â (±3)â K, also visible via resistivity thermal dependence, followed by a stack tetramerization with the establishment of a (½, ½, ½) superstructure below 90â (±5)â K. The latter ground state is driven by a spin-Peierls (SP) instability, as demonstrated by the temperature dependence of the magnetic susceptibility. Surprisingly, these two kinds of instability appear to be fully decoupled here, at variance with other tetra-methyl-tetra-thia-fulvalene (TMTTF) or tetramethyl-tetra-selena-fulvalene (TMTSF) salts with such non-centrosymmetric counter-ions.
RESUMO
Light-Induced Excited Spin State Trapping (LIESST) data are reported for seven isostructural solvate salts from the iron(ii)/2,6-di(pyrazol-1-yl)pyridine family. A complicated relationship between their spin-crossover T1/2 and T(LIESST) values may reflect low-temperature thermal and light-induced symmetry breaking, which is shown by one of the compounds but not by two others.
RESUMO
The organization of a molecular FeIII complex embedded in a halogen-bonded 2D network is chemically tuned to trigger temperature- and light-induced spin-state switching. We attribute the associated magnetic properties and the unprecedented photoswitching effect to the optimized structural confinement provided by the presence of the supramolecular host framework.
RESUMO
The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN)3)2](4,4'-bipy)2]n is reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering. This is interpreted as resulting from the competition between the two types of SSCW order and another structural symmetry breaking, due to ligand ordering, occurring at low temperature and precluding long-range SSCW order.