Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Commun ; 15(1): 1755, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409228

RESUMO

Nearly two hundred common-variant depression risk loci have been identified by genome-wide association studies (GWAS). However, the impact of rare coding variants on depression remains poorly understood. Here, we present whole-exome sequencing analyses of depression with seven different definitions based on survey, questionnaire, and electronic health records in 320,356 UK Biobank participants. We showed that the burden of rare damaging coding variants in loss-of-function intolerant genes is significantly associated with risk of depression with various definitions. We compared the rare and common genetic architecture across depression definitions by genetic correlation and showed different genetic relationships between definitions across common and rare variants. In addition, we demonstrated that the effects of rare damaging coding variant burden and polygenic risk score on depression risk are additive. The gene set burden analyses revealed overlapping rare genetic variant components with developmental disorder, autism, and schizophrenia. Our study provides insights into the contribution of rare coding variants, separately and in conjunction with common variants, on depression with various definitions and their genetic relationships with neurodevelopmental disorders.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento do Exoma , Bancos de Espécimes Biológicos , Depressão/genética , Biobanco do Reino Unido
2.
Genome Biol ; 25(1): 29, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254182

RESUMO

Expression quantitative trait loci (eQTL) offer insights into the regulatory mechanisms of trait-associated variants, but their effects often rely on contexts that are unknown or unmeasured. We introduce PICALO, a method for hidden variable inference of eQTL contexts. PICALO identifies and disentangles technical from biological context in heterogeneous blood and brain bulk eQTL datasets. These contexts are biologically informative and reproducible, outperforming cell counts or expression-based principal components. Furthermore, we show that RNA quality and cell type proportions interact with thousands of eQTLs. Knowledge of hidden eQTL contexts may aid in the inference of functional mechanisms underlying disease variants.


Assuntos
Encéfalo , Locos de Características Quantitativas , Contagem de Células , Análise de Componente Principal , Fenótipo
3.
Nat Commun ; 14(1): 3449, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301943

RESUMO

Muscle strength is highly heritable and predictive for multiple adverse health outcomes including mortality. Here, we present a rare protein-coding variant association study in 340,319 individuals for hand grip strength, a proxy measure of muscle strength. We show that the exome-wide burden of rare protein-truncating and damaging missense variants is associated with a reduction in hand grip strength. We identify six significant hand grip strength genes, KDM5B, OBSCN, GIGYF1, TTN, RB1CC1, and EIF3J. In the example of the titin (TTN) locus we demonstrate a convergence of rare with common variant association signals and uncover genetic relationships between reduced hand grip strength and disease. Finally, we identify shared mechanisms between brain and muscle function and uncover additive effects between rare and common genetic variation on muscle strength.


Assuntos
Força da Mão , Doenças Musculares , Humanos , Força Muscular/genética , Mutação de Sentido Incorreto , Predisposição Genética para Doença , Proteínas de Transporte
4.
Nat Genet ; 55(6): 927-938, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231097

RESUMO

Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.


Assuntos
Variação Genética , Transtornos do Neurodesenvolvimento , Humanos , Adulto , Animais , Camundongos , Predisposição Genética para Doença , Fenótipo , Cognição , Proteínas de Transporte/genética , Proteínas Nucleares/genética
5.
Nat Genet ; 55(3): 377-388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823318

RESUMO

Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases.


Assuntos
Encefalopatias , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes/genética , Encéfalo , Fenótipo , Encefalopatias/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Cell Genom ; 2(9): 100168, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36778668

RESUMO

Genome-wide association studies have successfully discovered thousands of common variants associated with human diseases and traits, but the landscape of rare variations in human disease has not been explored at scale. Exome-sequencing studies of population biobanks provide an opportunity to systematically evaluate the impact of rare coding variations across a wide range of phenotypes to discover genes and allelic series relevant to human health and disease. Here, we present results from systematic association analyses of 4,529 phenotypes using single-variant and gene tests of 394,841 individuals in the UK Biobank with exome-sequence data. We find that the discovery of genetic associations is tightly linked to frequency and is correlated with metrics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and release the dataset as a public resource alongside the Genebass browser for rapidly exploring rare-variant association results.

7.
Nat Aging ; 2(4): 289-294, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117740

RESUMO

Genetic predisposition has been shown to contribute substantially to the age at which we die. Genome-wide association studies (GWASs) have linked more than 20 loci to phenotypes related to human lifespan1. However, little is known about how lifespan is impacted by gene loss of function. Through whole-exome sequencing of 352,338 UK Biobank participants of European ancestry, we assessed the relevance of protein-truncating variant (PTV) gene burden on individual and parental survival. We identified four exome-wide significant (P < 4.2 × 10-7) human lifespan genes, BRCA1, BRCA2, ATM and TET2. Gene and gene-set, PTV-burden, phenome-wide association studies support known roles of these genes in cancer to impact lifespan at the population level. The TET2 PTV burden was associated with a lifespan through somatic mutation events presumably due to clonal hematopoiesis. The overlap between PTV burden and common variant-based lifespan GWASs was modest, underscoring the value of exome sequencing in well-powered biobank cohorts to complement GWASs for identifying genes underlying complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Longevidade , Humanos , Longevidade/genética , Proteínas/genética , Predisposição Genética para Doença/genética , Fenótipo
8.
Nat Commun ; 12(1): 6411, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741066

RESUMO

Complex traits are characterized by multiple genes and variants acting simultaneously on a phenotype. However, studying the contribution of individual pairs of genes to complex traits has been challenging since human genetics necessitates very large population sizes, while findings from model systems do not always translate to humans. Here, we combine genetics with combinatorial RNAi (coRNAi) to systematically test for pairwise additive effects (AEs) and genetic interactions (GIs) between 30 lipid genome-wide association studies (GWAS) genes. Gene-based burden tests from 240,970 exomes show that in carriers with truncating mutations in both, APOB and either PCSK9 or LPL ("human double knock-outs") plasma lipid levels change additively. Genetics and coRNAi identify overlapping AEs for 12 additional gene pairs. Overlapping GIs are observed for TOMM40/APOE with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate plasma and cellular lipid levels primarily via AEs and nominates putative drug target pairs for improved lipid-lowering combination therapies.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Pró-Proteína Convertase 9/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Neurocam/genética , Neurocam/metabolismo , Pró-Proteína Convertase 9/genética
9.
Nat Genet ; 53(7): 942-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183854

RESUMO

The UK Biobank Exome Sequencing Consortium (UKB-ESC) is a private-public partnership between the UK Biobank (UKB) and eight biopharmaceutical companies that will complete the sequencing of exomes for all ~500,000 UKB participants. Here, we describe the early results from ~200,000 UKB participants and the features of this project that enabled its success. The biopharmaceutical industry has increasingly used human genetics to improve success in drug discovery. Recognizing the need for large-scale human genetics data, as well as the unique value of the data access and contribution terms of the UKB, the UKB-ESC was formed. As a result, exome data from 200,643 UKB enrollees are now available. These data include ~10 million exonic variants-a rich resource of rare coding variation that is particularly valuable for drug discovery. The UKB-ESC precompetitive collaboration has further strengthened academic and industry ties and has provided teams with an opportunity to interact with and learn from the wider research community.


Assuntos
Bancos de Espécimes Biológicos , Descoberta de Drogas , Sequenciamento do Exoma , Genética Humana , Pesquisa , Descoberta de Drogas/métodos , Genômica/métodos , Humanos , Reino Unido
10.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443159

RESUMO

Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) is a ubiquitously expressed lipid kinase that inactivates IP3, a secondary messenger that stimulates calcium release from the endoplasmic reticulum (ER). Genome-wide association studies have identified common variants in the ITPKB gene locus associated with reduced risk of sporadic Parkinson's disease (PD). Here, we investigate whether ITPKB activity or expression level impacts PD phenotypes in cellular and animal models. In primary neurons, knockdown or pharmacological inhibition of ITPKB increased levels of phosphorylated, insoluble α-synuclein pathology following treatment with α-synuclein preformed fibrils (PFFs). Conversely, ITPKB overexpression reduced PFF-induced α-synuclein aggregation. We also demonstrate that ITPKB inhibition or knockdown increases intracellular calcium levels in neurons, leading to an accumulation of calcium in mitochondria that increases respiration and inhibits the initiation of autophagy, suggesting that ITPKB regulates α-synuclein pathology by inhibiting ER-to-mitochondria calcium transport. Furthermore, the effects of ITPKB on mitochondrial calcium and respiration were prevented by pretreatment with pharmacological inhibitors of the mitochondrial calcium uniporter complex, which was also sufficient to reduce α-synuclein pathology in PFF-treated neurons. Taken together, these results identify ITPKB as a negative regulator of α-synuclein aggregation and highlight modulation of ER-to-mitochondria calcium flux as a therapeutic strategy for the treatment of sporadic PD.


Assuntos
Cálcio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , alfa-Sinucleína/metabolismo , Animais , Autofagia/genética , Retículo Endoplasmático/metabolismo , Estudo de Associação Genômica Ampla/métodos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação/genética , Transdução de Sinais/genética , Sinucleinopatias/genética , Sinucleinopatias/metabolismo
11.
Am J Med Genet A ; 182(8): 1906-1912, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573057

RESUMO

Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Doenças Desmielinizantes/genética , Malformações do Sistema Nervoso/genética , Doença de Pelizaeus-Merzbacher/genética , RNA Polimerase III/genética , Tubulina (Proteína)/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Desmielinizantes/epidemiologia , Doenças Desmielinizantes/patologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Doença de Pelizaeus-Merzbacher/epidemiologia , Doença de Pelizaeus-Merzbacher/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
12.
Sci Rep ; 10(1): 2709, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066793

RESUMO

Biliary atresia (BA) is a severe pediatric liver disease resulting in necroinflammatory obliteration of the extrahepatic biliary tree. BA presents within the first few months of life as either an isolated finding or with additional syndromic features. The etiology of isolated BA is unknown, with evidence for infectious, environmental, and genetic risk factors described. However, to date, there are no definitive causal genes identified for isolated BA in humans, and the question of whether single gene defects play a major role remains open. We performed exome-sequencing in 101 North American patients of European descent with isolated BA (including 30 parent-child trios) and considered several experimental designs to identify potentially deleterious protein-altering variants that may be involved in the disease. In a case-only analysis, we did not identify genes with variants shared among more than two probands, and burden tests of rare variants using a case-case control design did not yield significant results. In the trio analysis of 30 simplex families (patient and parent trios), we identified 66 de novo variants in 66 genes including potentially deleterious variants in STIP1 and REV1. STIP1 is a co-chaperone for the heat-shock protein, HSP90, and has been shown to have diverse functions in yeast, flies and mammals, including stress-responses. REV1 is known to be a key player in DNA repair pathway and to interact with HSP90. In conclusion, our results do not support the hypothesis that a simple genetic model is responsible for the majority of cases of isolated BA. Our finding of de novo variants in genes linked to evolutionarily conserved stress responses (STIP1 and REV1) suggests that exploration of how genetic susceptibility and environmental exposure may interact to cause BA is warranted.


Assuntos
Atresia Biliar/diagnóstico , Exoma , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Mutação de Sentido Incorreto , Nucleotidiltransferases/genética , Atresia Biliar/genética , Atresia Biliar/metabolismo , Atresia Biliar/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Expressão Gênica , Interação Gene-Ambiente , Predisposição Genética para Doença , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Nucleotidiltransferases/metabolismo , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma
13.
Genet Med ; 20(8): 855-866, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29144510

RESUMO

PURPOSE: As massively parallel sequencing is increasingly being used for clinical decision making, it has become critical to understand parameters that affect sequencing quality and to establish methods for measuring and reporting clinical sequencing standards. In this report, we propose a definition for reduced coverage regions and describe a set of standards for variant calling in clinical sequencing applications. METHODS: To enable sequencing centers to assess the regions of poor sequencing quality in their own data, we optimized and used a tool (ExCID) to identify reduced coverage loci within genes or regions of particular interest. We used this framework to examine sequencing data from 500 patients generated in 10 projects at sequencing centers in the National Human Genome Research Institute/National Cancer Institute Clinical Sequencing Exploratory Research Consortium. RESULTS: This approach identified reduced coverage regions in clinically relevant genes, including known clinically relevant loci that were uniquely missed at individual centers, in multiple centers, and in all centers. CONCLUSION: This report provides a process road map for clinical sequencing centers looking to perform similar analyses on their data.


Assuntos
Sequenciamento do Exoma/métodos , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Sequência de Bases , Mapeamento Cromossômico , Exoma , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/normas , Software
14.
J Pers Med ; 6(1)2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26927186

RESUMO

Effective implementation of precision medicine will be enhanced by a thorough understanding of each patient's genetic composition to better treat his or her presenting symptoms or mitigate the onset of disease. This ideally includes the sequence information of a complete genome for each individual. At Partners HealthCare Personalized Medicine, we have developed a clinical process for whole genome sequencing (WGS) with application in both healthy individuals and those with disease. In this manuscript, we will describe our bioinformatics strategy to efficiently process and deliver genomic data to geneticists for clinical interpretation. We describe the handling of data from FASTQ to the final variant list for clinical review for the final report. We will also discuss our methodology for validating this workflow and the cost implications of running WGS.

15.
Cell Mol Gastroenterol Hepatol ; 2(5): 663-675.e2, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28090565

RESUMO

BACKGROUND & AIMS: Alagille syndrome is an autosomal-dominant, multisystem disorder caused primarily by mutations in JAG1, resulting in bile duct paucity, cholestasis, cardiac disease, and other features. Liver disease severity in Alagille syndrome is highly variable, however, factors influencing the hepatic phenotype are unknown. We hypothesized that genetic modifiers may contribute to the variable expressivity of this disorder. METHODS: We performed a genome-wide association study in a cohort of Caucasian subjects with known pathogenic JAG1 mutations, comparing patients with mild vs severe liver disease, followed by functional characterization of a candidate locus. RESULTS: We identified a locus that reached suggestive genome-level significance upstream of the thrombospondin 2 (THBS2) gene. THBS2 codes for a secreted matricellular protein that regulates cell proliferation, apoptosis, and angiogenesis, and has been shown to affect Notch signaling. By using a reporter mouse line, we detected thrombospondin 2 expression in bile ducts and periportal regions of the mouse liver. Examination of Thbs2-null mouse livers showed increased microvessels in the portal regions of adult mice. We also showed that thrombospondin 2 interacts with NOTCH1 and NOTCH2 and can inhibit JAG1-NOTCH2 interactions. CONCLUSIONS: Based on the genome-wide association study results, thrombospondin 2 localization within bile ducts, and demonstration of interactions of thrombospondin 2 with JAG1 and NOTCH2, we propose that changes in thrombospondin 2 expression may further perturb JAG1-NOTCH2 signaling in patients harboring a JAG1 mutation and lead to a more severe liver phenotype. These results implicate THBS2 as a plausible candidate genetic modifier of liver disease severity in Alagille syndrome.

16.
Hum Mutat ; 36(6): 631-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25765999

RESUMO

Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277 kb heterozygous deletion on chromosome 20, which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband.


Assuntos
Atresia Biliar/genética , Fator 3-beta Nuclear de Hepatócito/genética , Síndrome de Heterotaxia/genética , Heterozigoto , Hipopituitarismo/genética , Deleção de Sequência , Adulto , Alelos , Atresia Biliar/diagnóstico , Variações do Número de Cópias de DNA , Fácies , Feminino , Estudos de Associação Genética , Genótipo , Síndrome de Heterotaxia/diagnóstico , Humanos , Hipopituitarismo/diagnóstico , Lactente , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA
17.
Hum Genet ; 133(2): 235-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24104524

RESUMO

In the United States, biliary atresia (BA) is the most frequent indication for liver transplantation in pediatric patients. BA is a complex disease, with suspected environmental and genetic risk factors. A genome-wide association study in Chinese patients identified association to the 10q24.2 (hg18) genomic region. This signal was upstream of two genes, XPNPEP1 and ADD3, both expressed in intrahepatic bile ducts. We tested association to this region in 171 BA patients and 1,630 controls of European descent and found the strongest signal to be at rs7099604 (p = 2.5 × 10(-3)) in intron 1 of the ADD3 gene. Moreover, expression data suggest that ADD3, but not XPNPEP1, is differentially expressed in BA patients. The role of ADD3 in biliary development is unclear, but our findings suggest that this gene may be functionally relevant for the development of BA.


Assuntos
Atresia Biliar/genética , Proteínas de Ligação a Calmodulina/genética , Cromossomos Humanos Par 10/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Aminopeptidases/genética , Aminopeptidases/metabolismo , Atresia Biliar/metabolismo , Biópsia , Proteínas de Ligação a Calmodulina/metabolismo , Mapeamento Cromossômico , Estudos de Coortes , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Desequilíbrio de Ligação , Fígado/metabolismo , Fígado/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Estados Unidos , População Branca/genética
18.
Bioinformatics ; 29(19): 2498-500, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943636

RESUMO

SUMMARY: We report our new DRAW+SneakPeek software for DNA-seq analysis. DNA resequencing analysis workflow (DRAW) automates the workflow of processing raw sequence reads including quality control, read alignment and variant calling on high-performance computing facilities such as Amazon elastic compute cloud. SneakPeek provides an effective interface for reviewing dozens of quality metrics reported by DRAW, so users can assess the quality of data and diagnose problems in their sequencing procedures. Both DRAW and SneakPeek are freely available under the MIT license, and are available as Amazon machine images to be used directly on Amazon cloud with minimal installation. AVAILABILITY: DRAW+SneakPeek is released under the MIT license and is available for academic and nonprofit use for free. The information about source code, Amazon machine images and instructions on how to install and run DRAW+SneakPeek locally and on Amazon elastic compute cloud is available at the National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (http://www.niagads.org/) and Wang lab Web site (http://wanglab.pcbi.upenn.edu/).


Assuntos
Biometria/métodos , DNA/análise , Análise de Sequência de DNA/métodos , Design de Software , Internet , Linguagens de Programação
19.
Am J Med Genet A ; 161A(9): 2134-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23897863

RESUMO

This report describes an algorithm developed to predict the pathogenicity of copy number variants (CNVs) in large sample cohorts. CNVs (genomic deletions and duplications) are found in healthy individuals and in individuals with genetic diagnoses, and differentiation of these two classes of CNVs can be challenging and usually requires extensive manual curation. We have developed PECONPI, an algorithm to assess the pathogenicity of CNVs based on gene content and CNV frequency. This software was applied to a large cohort of patients with genetically heterogeneous non-syndromic hearing loss to score and rank each CNV based on its relative pathogenicity. Of 636 individuals tested, we identified the likely underlying etiology of the hearing loss in 14 (2%) of the patients (1 with a homozygous deletion, 7 with a deletion of a known hearing loss gene and a point mutation on the trans allele and 6 with a deletion larger than 1 Mb). We also identified two probands with smaller deletions encompassing genes that may be functionally related to their hearing loss. The ability of PECONPI to determine the pathogenicity of CNVs was tested on a second genetically heterogeneous cohort with congenital heart defects (CHDs). It successfully identified a likely etiology in 6 of 355 individuals (2%). We believe this tool is useful for researchers with large genetically heterogeneous cohorts to help identify known pathogenic causes and novel disease genes.


Assuntos
Perda Auditiva Neurossensorial/genética , Software , Variações do Número de Cópias de DNA , Proteínas da Matriz Extracelular/genética , Deleção de Genes , Genômica/métodos , Genótipo , Cardiopatias Congênitas/genética , Humanos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
20.
Am J Med Genet A ; 161A(9): 2148-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873582

RESUMO

Hearing impairment affects 1 in 650 newborns, making it the most common congenital sensory impairment. Autosomal recessive nonsyndromic sensorineural hearing impairment (ARNSHI) comprises 80% of familial hearing impairment cases. Mutations in GJB2 account for a significant number of ARNSHI (and up to 50% of documented recessive (e.g., more than 1 affected sibling) hearing impairment in some populations). Mutations in the GJB2 gene are amongst the most common causes of hearing impairment in populations of various ethnic backgrounds. Two mutations of this gene, 35delG and 167delT, account for the majority of reported mutations in Caucasian populations, especially those of Mediterranean and Ashkenazi Jewish background. The 235delC mutation is most prevalent in East Asian populations. Some mutations are of less well-characterized significance. The V37I missense mutation, common in Asian populations, was initially described as a polymorphism and later as a potentially pathogenic mutation. We report here on 15 unrelated individuals with ARNSHI and homozygosity for the V37I GJB2 missense mutation. Nine individuals are of Chinese ancestry, two are of unspecified Asian descent, one is of Japanese descent, one individual is of Vietnamese ancestry, one of Philippine background and one of Italian and Cuban/Caucasian background. Homozygosity for the V37I GJB2 mutation may be a more common pathogenic missense mutation in Asian populations, resulting in mild to moderate sensorineural hearing impairment. We report a presumed haplotype block specific to East Asian individuals with the V37I mutation encompassing the GJB2 gene that may account for the high prevalence in East Asian populations.


Assuntos
Conexinas/genética , Perda Auditiva Neurossensorial/genética , Homozigoto , Mutação , Adolescente , Povo Asiático/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Códon , Conexina 26 , Análise Mutacional de DNA , Feminino , Haplótipos , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Lactente , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA