Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadh5272, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335288

RESUMO

Studies of laser-heated materials on femtosecond timescales have shown that the interatomic potential can be perturbed at sufficiently high laser intensities. For gold, it has been postulated to undergo a strong stiffening leading to an increase of the phonon energies, known as phonon hardening. Despite efforts to investigate this behavior, only measurements at low absorbed energy density have been performed, for which the interpretation of the experimental data remains ambiguous. By using in situ single-shot x-ray diffraction at a hard x-ray free-electron laser, the evolution of diffraction line intensities of laser-excited Au to a higher energy density provides evidence for phonon hardening.

2.
Phys Rev Lett ; 113(8): 085001, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192102

RESUMO

We visualize ps-time-scale evolution of an electron density bubble--a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse--from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ∼ 100 MeV electron beam. The results provide a basis for understanding optimized electron acceleration at a plasma density n(e) ≈ 2 × 10(19) cm(-3), inefficient acceleration at lower density, and dephasing limits at higher density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA