Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(8): e1010869, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556491

RESUMO

Metabolic pathways are known to sense the environmental stimuli and result in physiological adjustments. The responding processes need to be tightly controlled. Here, we show that upon encountering P. aeruginosa, C. elegans upregulate the transcription factor ets-4, but this upregulation is attenuated by the ribonuclease, rege-1. As such, mutants with defective REGE-1 ribonuclease activity undergo ets-4-dependent early death upon challenge with P. aeruginosa. Furthermore, mRNA-seq analysis revealed associated global changes in two key metabolic pathways, the IIS (insulin/IGF signaling) and TOR (target of rapamycin) kinase signaling pathways. In particular, failure to degrade ets-4 mRNA in activity-defective rege-1 mutants resulted in upregulation of class II longevity genes, which are suppressed during longevity, and activation of TORC1 kinase signaling pathway. Genetic inhibition of either pathway way was sufficient to abolish the poor survival phenotype in rege-1 worms. Further analysis of ETS-4 ChIP data from ENCODE and characterization of one upregulated class II gene, ins-7, support that the Class II genes are activated by ETS-4. Interestingly, deleting an upregulated Class II gene, acox-1.5, a peroxisome ß-oxidation enzyme, largely rescues the fat lost phenotype and survival difference between rege-1 mutants and wild-types. Thus, rege-1 appears to be crucial for animal survival due to its tight regulation of physiological responses to environmental stimuli. This function is reminiscent of its mammalian ortholog, Regnase-1, which modulates the intestinal mTORC1 signaling pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Insulina/genética , Insulina/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
2.
Sci Adv ; 8(32): eabm0699, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947655

RESUMO

Small RNAs regulate spermatogenesis across species ranging from Caenorhabditis elegans to humans. In C. elegans, two Argonaute proteins, ALG-3 and ALG-4, and their associated alg-3/4 26G-small RNAs are essential for spermiogenesis at 25°C. The alg-3/4 26G-small RNAs are antisense to their target mRNAs and produced by the RNA-dependent RNA polymerase, RRF-3. However, it remains unclear how the RNA templates for RRF-3 are generated and which cellular processes are affected by alg-3/4 26G-small RNAs. Here, we demonstrate a previously unidentified zc3h12a-like ribonuclease protein, NYN-3, in alg-3/4 26G-small RNAs biogenesis. NYN-3 is not only required for proper abundance of alg-3/4 26G-small RNAs but also crosslinked to their targeted mRNAs before RRF-3 from ePAR-CLIP-seq. Bioinformatics analysis was then used to parse the 26G-small RNA-targeted genes into functional subclasses. Collectively, these findings implicate NYN-3 as an initiator of alg-3/4 26G-small RNA generation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endorribonucleases/metabolismo , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Espermatogênese/genética , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 12(1): 3878, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188032

RESUMO

Different levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3' ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3'-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/genética , Receptor 4 Toll-Like/metabolismo , Regiões 3' não Traduzidas , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estabilidade de RNA , RNA Mensageiro/genética , Ribonucleases/metabolismo , Uridina Monofosfato/metabolismo
4.
EMBO J ; 40(11): e104123, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33511665

RESUMO

Upstream open reading frames (uORFs) are known to negatively affect translation of the downstream ORF. The regulatory proteins involved in relieving this inhibition are however poorly characterized. In response to cellular stress, eIF2α phosphorylation leads to an inhibition of global protein synthesis, while translation of specific factors such as CHOP is induced. We analyzed a 105-nt inhibitory uORF in the transcript of human CHOP (huORFchop ) and found that overexpression of the zebrafish or human ENDOU poly(U)-endoribonuclease (Endouc or ENDOU-1, respectively) increases CHOP mRNA translation also in the absence of stress. We also found that Endouc/ENDOU-1 binds and cleaves the huORFchop transcript at position 80G-81U, which induces CHOP translation independently of phosphorylated eIF2α. However, both ENDOU and phospho-eIF2α are nonetheless required for maximal translation of CHOP mRNA. Increased levels of ENDOU shift a huORFchop reporter as well as endogenous CHOP transcripts from the monosome to polysome fraction, indicating an increase in translation. Furthermore, we found that the uncapped truncated huORFchop -69-105-nt transcript contains an internal ribosome entry site (IRES), facilitating translation of the cleaved transcript. Therefore, we propose a model where ENDOU-mediated transcript cleavage positively regulates CHOP translation resulting in increased CHOP protein levels upon stress. Specifically, CHOP transcript cleavage changes the configuration of huORFchop thereby releasing its inhibition and allowing the stalled ribosomes to resume translation of the downstream ORF.


Assuntos
RNA Mensageiro/genética , Fator de Transcrição CHOP/genética , Endorribonucleases Específicas de Uridilato/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Motivos de Nucleotídeos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fator de Transcrição CHOP/metabolismo , Peixe-Zebra
5.
J Am Chem Soc ; 138(7): 2389-98, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26836966

RESUMO

The mechanism of DNA polymerase (pol) fidelity is of fundamental importance in chemistry and biology. While high-fidelity pols have been well studied, much less is known about how some pols achieve medium or low fidelity with functional importance. Here we examine how human DNA polymerase λ (Pol λ) achieves medium fidelity by determining 12 crystal structures and performing pre-steady-state kinetic analyses. We showed that apo-Pol λ exists in the closed conformation, unprecedentedly with a preformed MgdNTP binding pocket, and binds MgdNTP readily in the active conformation in the absence of DNA. Since prebinding of MgdNTP could lead to very low fidelity as shown previously, it is attenuated in Pol λ by a hydrophobic core including Leu431, Ile492, and the Tyr505/Phe506 motif. We then predicted and demonstrated that L431A mutation enhances MgdNTP prebinding and lowers the fidelity. We also hypothesized that the MgdNTP-prebinding ability could stabilize a mismatched ternary complex and destabilize a matched ternary complex, and provided evidence with structures in both forms. Our results demonstrate that, while high-fidelity pols follow a common paradigm, Pol λ has developed specific conformations and mechanisms for its medium fidelity. Structural comparison with other pols also suggests that different pols likely utilize different conformational changes and microscopic mechanisms to achieve their catalytic functions with varying fidelities.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Cristalografia por Raios X , DNA Polimerase beta/genética , Humanos , Modelos Moleculares , Conformação Proteica
6.
RNA Biol ; 12(3): 255-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826659

RESUMO

Ribosome biogenesis governs protein synthesis. NIFK is transactivated by c-Myc, the key regulator of ribosome biogenesis. The biological function of human NIFK is not well established, except that it has been shown to interact with Ki67 and NPM1. Here we report that NIFK is required for cell cycle progression and participates in the ribosome biogenesis via its RNA recognition motif (RRM). We show that silencing of NIFK inhibits cell proliferation through a reversible p53-dependent G1 arrest, possibly by induction of the RPL5/RPL11-mediated nucleolar stress. Mechanistically it is the consequence of impaired maturation of 28S and 5.8S rRNA resulting from inefficient cleavage of internal transcribed spacer (ITS) 1, a critical step in the separation of pre-ribosome to small and large subunits. Complementation of NIFK silencing by mutants shows that RNA-binding ability of RRM is essential for the pre-rRNA processing and G1 progression. More specifically, we validate that the RRM of NIFK preferentially binds to the 5'-region of ITS2 rRNA likely in both sequence specific and secondary structure dependent manners. Our results show how NIFK is involved in cell cycle progression through RRM-dependent pre-rRNA maturation, which could enhance our understanding of the function of NIFK in cell proliferation, and potentially also cancer and ribosomopathies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Biossíntese de Proteínas , Precursores de RNA/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleofosmina , Motivos de Nucleotídeos , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Precursores de RNA/metabolismo , RNA Ribossômico 28S/metabolismo , RNA Ribossômico 5,8S/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Cell ; 160(3): 407-19, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635455

RESUMO

Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Endorribonucleases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/química , Endorribonucleases/genética , Dados de Sequência Molecular , Interferência de RNA , RNA de Cadeia Dupla , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo , Alinhamento de Sequência
8.
Nucleic Acids Res ; 38(22): 8316-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20705647

RESUMO

RNase P catalyzes the Mg(2)(+)-dependent 5'-maturation of precursor tRNAs. Biochemical studies on the bacterial holoenzyme, composed of one catalytic RNase P RNA (RPR) and one RNase P protein (RPP), have helped understand the pleiotropic roles (including substrate/Mg(2+) binding) by which a protein could facilitate RNA catalysis. As a model for uncovering the functional coordination among multiple proteins that aid an RNA catalyst, we use archaeal RNase P, which comprises one catalytic RPR and at least four RPPs. Exploiting our previous finding that these archaeal RPPs function as two binary RPP complexes (POP5•RPP30 and RPP21•RPP29), we prepared recombinant RPP pairs from three archaea and established interchangeability of subunits through homologous/heterologous assemblies. Our finding that archaeal POP5•RPP30 reconstituted with bacterial and organellar RPRs suggests functional overlap of this binary complex with the bacterial RPP and highlights their shared recognition of a phylogenetically-conserved RPR catalytic core, whose minimal attributes we further defined through deletion mutagenesis. Moreover, single-turnover kinetic studies revealed that while POP5•RPP30 is solely responsible for enhancing the RPR's rate of precursor tRNA cleavage (by 60-fold), RPP21•RPP29 contributes to increased substrate affinity (by 16-fold). Collectively, these studies provide new perspectives on the functioning and evolution of an ancient, catalytic ribonucleoprotein.


Assuntos
Proteínas Arqueais/metabolismo , Subunidades Proteicas/metabolismo , Ribonuclease P/metabolismo , Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Biocatálise , Cinética , Mutagênese , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Precursores de RNA/metabolismo , RNA de Transferência/metabolismo , Ribonuclease P/química , Ribonuclease P/isolamento & purificação
9.
Proc Natl Acad Sci U S A ; 103(44): 16147-52, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17053064

RESUMO

RNase P, which catalyzes the magnesium-dependent 5'-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyrococcus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its k(cat) and a 170-fold decrease in K(m). In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P.


Assuntos
Pyrococcus furiosus/enzimologia , Ribonuclease P/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease P/genética , Ribonuclease P/isolamento & purificação
10.
Proc Natl Acad Sci U S A ; 100(26): 15398-403, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14673079

RESUMO

We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms.


Assuntos
Proteínas Arqueais/química , Methanobacteriaceae/enzimologia , Ribonuclease P/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência de Bases , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Ribonuclease P/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Transcrição Gênica
11.
J Mol Biol ; 325(4): 661-75, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12507471

RESUMO

Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.


Assuntos
Endorribonucleases/química , Proteínas de Escherichia coli , Escherichia coli/enzimologia , RNA Catalítico/química , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Simulação por Computador , Cisteína/química , Pegada de DNA , DNA Bacteriano/genética , Ácido Edético , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Evolução Molecular , Compostos Ferrosos , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Radical Hidroxila/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Ribonuclease P
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA