Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23501, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411462

RESUMO

In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.


Assuntos
Proteínas Hedgehog , Células-Tronco Neurais , Animais , Camundongos , Neurônios , Neurogênese , Encéfalo , Mamíferos
2.
Oncotarget ; 8(11): 18031-18049, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28160553

RESUMO

Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glioblastoma/enzimologia , Xenoenxertos , Humanos , Immunoblotting , Camundongos , Reação em Cadeia da Polimerase , Peixe-Zebra
3.
Dev Dyn ; 243(9): 1130-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044744

RESUMO

BACKGROUND: Postnatal neurogenesis persists throughout life in the subventricular zone (SVZ)-olfactory bulb pathway in mammals. Extrinsic or intrinsic factors have been revealed to regulate neural stem cell (NSC) properties and neurogenesis. Thyroid hormone receptor interacting protein 6 (TRIP6) belongs to zyxin family of LIM proteins, which have been shown to interact with various proteins to mediate cellular functions. However, the role of TRIP6 in NSCs is still unknown. RESULTS: By performing double immunofluorescence staining, we found that TRIP6 was expressed by Sox2-positive NSCs in embryonic and postnatal mouse forebrains. To study the function of TRIP6 in NSCs, we performed overexpression and knockdown experiments with neurospheres derived from postnatal day 7 SVZ. We found that TRIP6 was necessary and sufficient for self-renewal and proliferation of NSCs, but inhibited their differentiation. To further investigate the mechanism of TRIP6 in NSCs, we performed Luciferase reporter assay and found that TRIP6 activated Notch signaling, a pathway required for NSC self-renewal. CONCLUSIONS: Our data suggest that TRIP6 regulates NSC maintenance and it may be a new marker for NSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/citologia , Proteínas com Domínio LIM/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Proteínas com Domínio LIM/genética , Ventrículos Laterais/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA