Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Obes Rev ; 25(3): e13665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072656

RESUMO

Understanding sex differences in immunological responses in the context of obesity is important to improve health outcomes. This systematic review aimed to investigate sex differences in systemic inflammation, immune cell phenotype, and function in diet-induced obesity (DIO) animal models. A systematic search in Medline, Embase, and CINAHL from inception to April 2023 was conducted, using a combination of the following concepts: sex, obesity, cytokines, and immune cell phenotypes/function. Forty-one publications reporting on systemic inflammation (61%), cell phenotype (44%), and/or function (7%) were included. Females had lower systemic inflammation compared with males in response to DIO intervention and a higher proportion of macrophage (M)2-like cells compared with males that had a higher proportion of M1-like in adipose tissue. Although there were no clear sex differences in immune function, high-fat DIO intervention remains an important factor in the development of immune dysfunction in both males and females, including disturbances in cytokine production, proliferation, and migration of immune cells. Yet, the mechanistic links between diet and obesity on such immune dysfunction remain unclear. Future studies should investigate the role of diet and obesity in the functionality of immune cells and employ adequate methods for a high-quality investigation of sex differences in this context.


Assuntos
Obesidade , Caracteres Sexuais , Animais , Feminino , Masculino , Inflamação , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo , Imunidade
6.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756544

RESUMO

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Glicólise , Aterosclerose/metabolismo , Colesterol/metabolismo , Antioxidantes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
J Immunol ; 211(3): 497-507, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294291

RESUMO

Cachexia is a major cause of death in cancer and leads to wasting of cardiac and skeletal muscle, as well as adipose tissue. Various cellular and soluble mediators have been postulated in driving cachexia; however, the specific mechanisms behind this muscle wasting remain poorly understood. In this study, we found polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to be critical for the development of cancer-associated cachexia. Significant expansion of PMN-MDSCs was observed in the cardiac and skeletal muscles of cachectic murine models. Importantly, the depletion of this cell subset, using depleting anti-Ly6G Abs, attenuated this cachectic phenotype. To elucidate the mechanistic involvement of PMN-MDSCs in cachexia, we examined major mediators, that is, IL-6, TNF-α, and arginase 1. By employing a PMN-MDSC-specific Cre-recombinase mouse model, we showed that PMN-MDSCs were not maintained by IL-6 signaling. In addition, PMN-MDSC-mediated cardiac and skeletal muscle loss was not abrogated by deficiency in TNF-α or arginase 1. Alternatively, we found PMN-MDSCs to be critical producers of activin A in cachexia, which was noticeably elevated in cachectic murine serum. Moreover, inhibition of the activin A signaling pathway completely protected against cardiac and skeletal muscle loss. Collectively, we demonstrate that PMN-MDSCs are active producers of activin A, which in turn induces cachectic muscle loss. Targeting this immune/hormonal axis will allow the development of novel therapeutic interventions for patients afflicted with this debilitating syndrome.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Arginase/metabolismo , Caquexia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Miocárdio , Músculo Esquelético/metabolismo
8.
Front Immunol ; 14: 1146082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033940

RESUMO

Maternal influences on the immune health and development of an infant begin in utero and continue well into the postnatal period, shaping and educating the child's maturing immune system. Two maternal provisions include early microbial colonizers to initiate microbiota establishment and the transfer of antibodies from mother to baby. Maternal antibodies are a result of a lifetime of antigenic experience, reflecting the infection history, health and environmental exposure of the mother. These same factors are strong influencers of the microbiota, inexorably linking the two. Together, these provisions help to educate the developing neonatal immune system and shape lymphocyte repertoires, establishing a role for external environmental influences even before birth. In the context of autoimmunity, the transfer of maternal autoantibodies has the potential to be harmful for the child, sometimes targeting tissues and cells with devastating consequences. Curiously, this does not seem to apply to maternal autoantibody transfer in type 1 diabetes (T1D). Moreover, despite the rising prevalence of the disease, little research has been conducted on the effects of maternal dysbiosis or antibody transfer from an affected mother to her offspring and thus their relevance to disease development in the offspring remains unclear. This review seeks to provide a thorough evaluation of the role of maternal microorganisms and antibodies within the context of T1D, exploring both their pathogenic and protective potential. Although a definitive understanding of their significance in infant T1D development remains elusive at present, we endeavor to present what has been learned with the goal of spurring further interest in this important and intriguing question.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Lactente , Recém-Nascido , Criança , Feminino , Autoimunidade , Sistema Imunitário , Autoanticorpos , Mães
9.
Eur J Nutr ; 62(6): 2399-2413, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37106253

RESUMO

PURPOSE: To study the effects of feeding docosahexaenoic acid (DHA, derived from novel canola oil), with same amount of arachidonic acid (ARA), supplemented diet to lactating dams on the immune system development of suckled offspring using a T helper type-2 (Th2)-dominant BALB/c mouse. METHODS: Dams received nutritionally complete control (no ARA or DHA) or DHA + ARA diet (1% DHA and 1% ARA of total fatty acids) from 5 days pre-parturition to the end of 3-week suckling period. After euthanization, relevant tissues were collected to study fatty acids, splenocyte phenotype and function (ex vivo cytokines with/without lipopolysaccharide (LPS, bacterial challenge) or phorbol myristate acetate + ionomycin (PMAi) stimulation). RESULTS: Feeding dams a DHA diet significantly increased the mammary gland milk phospholipid concentration of DHA and ARA. This resulted in 60% higher DHA levels in splenocyte phospholipids of the pups although ARA levels showed no difference. In dams fed DHA diet, significantly higher proportion of CD27+ cytotoxic T cell (CTL) and CXCR3+ CCR6- Th (enriched in Th1) were observed than control, but there were no differences in the splenocyte function upon PMAi (non-specific lymphocyte stimulant) stimulation. Pups from DHA-fed dams showed significantly higher IL-1ß, IFN-γ and TNF-α (inflammatory cytokines) by LPS-stimulated splenocytes. This may be due to higher proportion of CD86+ macrophages and B cells (all p's < 0.05) in these pups, which may influence T cell polarization. CONCLUSION: Plant-based source of DHA in maternal diet resulted in higher ex vivo production of inflammatory cytokines by splenocytes due to change in their phenotype, and this can skew T cell towards Th1 response in a Th2-dominant BALB/c mouse.


Assuntos
Ácidos Docosa-Hexaenoicos , Hipersensibilidade , Animais , Feminino , Camundongos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Araquidônico , Óleo de Brassica napus , Lactação , Lipopolissacarídeos/farmacologia , Suplementos Nutricionais , Dieta , Citocinas , Ácidos Graxos/farmacologia , Fosfolipídeos , Sistema Imunitário
10.
Front Endocrinol (Lausanne) ; 14: 1128622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992811

RESUMO

The signaling pathways downstream of the insulin receptor (InsR) are some of the most evolutionarily conserved pathways that regulate organism longevity and metabolism. InsR signaling is well characterized in metabolic tissues, such as liver, muscle, and fat, actively orchestrating cellular processes, including growth, survival, and nutrient metabolism. However, cells of the immune system also express the InsR and downstream signaling machinery, and there is increasing appreciation for the involvement of InsR signaling in shaping the immune response. Here, we summarize current understanding of InsR signaling pathways in different immune cell subsets and their impact on cellular metabolism, differentiation, and effector versus regulatory function. We also discuss mechanistic links between altered InsR signaling and immune dysfunction in various disease settings and conditions, with a focus on age related conditions, such as type 2 diabetes, cancer and infection vulnerability.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor de Insulina , Humanos , Receptor de Insulina/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transdução de Sinais , Sistema Imunitário/metabolismo
11.
Eur J Nutr ; 62(2): 699-711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36197467

RESUMO

PURPOSE: To understand the effects of consuming high-fat and low-fat dairy products on postprandial cardiometabolic risk factors and intestinal immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance. METHODS: LBW piglets were randomized to consume one of the 3 experimental high fat diets and were fed for a total of 7 weeks: (1) Control high fat (LBW-CHF), (2) CHF diet supplemented with 3 servings of high-fat dairy (LBW-HFDairy) and (3) CHF diet supplemented with 3 servings of low-fat dairy (LBW-LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). At 11 weeks of age, all piglets underwent an established modified oral glucose and fat tolerance test. At 12 weeks of age, piglets were euthanized and ex vivo cytokine production by cells isolated from mesenteric lymph node (MLN) stimulated with mitogens was assessed. RESULTS: Dairy consumption did not modulate postprandial plasma lipid, inflammatory markers and glucose concentrations. A lower production of IL-2 and TNF-α after pokeweed mitogen (PWM) stimulation was observed in LBW-CHF vs NBW-Chow (P < 0.05), suggesting impaired MLN T cell function. While feeding high-fat dairy had minimal effects, feeding low-fat dairy significantly improved the production of IL-2 and TNF-α after PWM stimulation (P < 0.05). CONCLUSIONS: Irrespective of fat content, dairy had a neutral effect on postprandial cardiometabolic risk factors. Low-fat dairy products improved intestinal T cell function to a greater extent than high-fat dairy in this swine model of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Animais , Peso ao Nascer , Dieta com Restrição de Gorduras , Glucose , Imunidade , Resistência à Insulina/fisiologia , Interleucina-2 , Suínos , Fator de Necrose Tumoral alfa
12.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38529494

RESUMO

A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.

13.
Front Cell Dev Biol ; 10: 1044729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467420

RESUMO

Macrophages and dendritic cells are myeloid cells that play critical roles in immune responses. Macrophages help to maintain homeostasis through tissue regeneration and the clearance of dead cells, but also mediate inflammatory processes against invading pathogens. As the most potent antigen-presenting cells, dendritic cells are important in connecting innate to adaptive immune responses via activation of T cells, and inducing tolerance under physiological conditions. While it is known that macrophages and dendritic cells respond to biochemical cues in the microenvironment, the role of extracellular mechanical stimuli is becoming increasingly apparent. Immune cell mechanotransduction is an emerging field, where accumulating evidence suggests a role for extracellular physical cues coming from tissue stiffness in promoting immune cell recruitment, activation, metabolism and inflammatory function. Additionally, many diseases such as pulmonary fibrosis, cardiovascular disease, cancer, and cirrhosis are associated with changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, topography, and mechanical forces on macrophage and dendritic cell behavior under steady-state and pathophysiological conditions. In addition, we will also provide insight on molecular mediators and signaling pathways important in macrophage and dendritic cell mechanotransduction.

14.
Am J Clin Nutr ; 116(6): 1805-1819, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36166844

RESUMO

BACKGROUND: While lipid emulsions in modern formulations for total parenteral nutrition (TPN) provide essential fatty acids and dense calories, they also promote inflammation and immunometabolic disruptions. OBJECTIVES: We aimed to develop a novel lipid emulsion for TPN use with superior immunometabolic actions compared with available standard lipid emulsions. METHODS: A novel lipid emulsion [Vegaven (VV)] containing 30% of 18-carbon n-3 fatty acids (α-linolenic acid and stearidonic acid) was developed for TPN (VV-TPN) and compared with TPN containing soybean oil-based lipid emulsion (IL-TPN) and fish-oil-based lipid emulsion (OV-TPN). In vivo studies were performed in instrumented male C57BL/6 mice subjected to 7-d TPN prior to analysis of cytokines, indices of whole-body and hepatic glucose metabolism, immune cells, lipid mediators, and mucosal bowel microbiome. RESULTS: IL-6 to IL-10 ratios were significantly lower in liver and skeletal muscle of VV-TPN mice when compared with IL-TPN or OV-TPN mice. VV-TPN and OV-TPN each increased hepatic insulin receptor abundance and resulted in similar HOMA-IR values, whereas only VV-TPN increased hepatic insulin receptor substrate 2 and maintained normal hepatic glycogen content, effects that were IL-10-dependent and mediated by glucokinase activation. The percentages of IFN-γ- and IL-17-expressing CD4+ T cells were increased in livers of VV-TPN mice, and liver macrophages exhibited primed phenotypes when compared with IL-TPN. This immunomodulation was associated with successful elimination of the microinvasive bacterium Akkermansia muciniphila from the bowel mucosa by VV-TPN as opposed to standard lipid emulsions. Assay of hepatic lipid mediators revealed a distinct profile with VV-TPN, including increases in 9(S)-hydroxy-octadecatrienoic acid. When co-administered with IL-TPN, hydroxy-octadecatrienoic acids mimicked the VV-TPN immunometabolic phenotype. CONCLUSIONS: We here report the unique anti-inflammatory, insulin-sensitizing, and immunity-enhancing properties of a newly developed lipid emulsion designed for TPN use based on 18-carbon n-3 fatty acids.


Assuntos
Ácidos Graxos Ômega-3 , Nutrição Parenteral Total , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Emulsões , Emulsões Gordurosas Intravenosas/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Interleucina-10 , Camundongos Endogâmicos C57BL , Fenótipo , Óleo de Soja/farmacologia
15.
Front Nutr ; 9: 923120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782930

RESUMO

Although dairy intake has been shown to have a neutral or some beneficial effect on major cardiometabolic risk factors, the impact of dairy, and especially dairy fat, on immune function remains to be investigated. To understand the effect of consuming dairy fat on cardiometabolic risk factors and immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance to compare high-fat and low-fat dairy products to a control high-fat diet (CHF). LBW piglets were randomized to consume one of the 3 experimental HF diets: (1) CHF, (2) CHF diet supplemented with 3 servings/day of high-fat dairy (HFDairy) and (3) CHF diet supplemented with 3 servings/day of low-fat dairy (LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). A total of 35 pigs completed the study and were fed for a total of 7 weeks, including 1 week of CHF transition diet. At 12 weeks of age, piglets were euthanized. Fasting blood and tissue samples were collected. Ex vivo cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with pokeweed (PWM), phytohemagglutinin (PHA) and phorbol myristate acetate-ionomycin (PMA-I) were assessed. As expected, LBW-CHF piglets showed early signs of insulin resistance (HOMA-IR, P model = 0.08). Feeding high-fat dairy products improved fasting plasma glucose concentrations more than low-fat dairy compared to LBW-CHF (P < 0.05). Irrespective of fat content, dairy consumption had neutral effect on fasting lipid profile. We have also observed lower production of IL-2 after PWM and PHA stimulation as well as lower production of TNF-α and IFN-γ after PWM stimulation in LBW-CHF than in NBW-Chow (all, P < 0.05), suggesting impaired T cell and antigen presenting cell function. While feeding high-fat dairy had minimal effect on immune function, feeding low-fat dairy significantly improved the production of IL-2, TNF-α and IFN-γ after PWM stimulation, IL-2 and IFN-γ after PHA stimulation as well as TNF-α after PMA-I stimulation compared to LBW-CHF (all, P < 0.05). These data provide novel insights into the role of dairy consumption in counteracting some obesity-related cardiometabolic and immune perturbations.

16.
Front Nutr ; 9: 840209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252310

RESUMO

Obesity has emerged as a leading global health concern. It is characterized by chronic low-grade inflammation, which impairs insulin signaling, lipid metabolism and immune function. Recent findings from animal and clinical studies have begun to elucidate the underlying mechanisms of immune dysfunction seen in the context of obesity. Here, we provide a brief review on the current understanding of the interplay between obesity, dyslipidemia and immunity. We also emphasize the advantages and shortcomings of numerous applicable research models including rodents and large animal swine that aim at unraveling the molecular basis of disease and clinical manifestations. Although there is no perfect model to answer all questions at once, they are often used to complement each other. Finally, we highlight some emerging nutritional strategies to improve immune function in the context of obesity with a particular focus on choline and foods that contains high amounts of choline.

17.
STAR Protoc ; 3(2): 101233, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313712

RESUMO

The mechanical properties of polydimethylsiloxane hydrogels can be tuned to mimic physiological tensions, an underappreciated environmental parameter in immunology studies. We describe a workflow to prepare PDMS-coated tissue culture plates with biologically relevant substrate stiffness, and the use of these hydrogel plates to condition isolated primary splenic CD11c+ dendritic cells (DC). Finally, we suggest downstream applications to study the impact of substrate stiffness on DC function and metabolism. The protocol could be adapted to study other mechanosensitive immune cell subsets. For complete details on the use and execution of this protocol, please refer to Chakraborty et al. (2021).


Assuntos
Fenômenos Fisiológicos Celulares , Hidrogéis , Células Dendríticas
18.
J Nutr ; 152(5): 1347-1357, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102397

RESUMO

BACKGROUND: Immune function is altered during obesity. Moreover, males and females across different species demonstrate distinct susceptibility to several diseases. However, less is known regarding the interplay between high-fat diet (HFD) and sex in the context of immune function. OBJECTIVES: The objective was to determine sex differences on immune function in response to an HFD compared with a control low-fat diet (LFD) in Wistar rats. METHODS: At 5 wk of age, male and female Wistar rats were randomly assigned to 1 of 2 diets for 9 wk: ad libitum control LFD (20 kcal% fat, 53 kcal% carbohydrate, and 27 kcal% protein) or HFD (50 kcal% fat, 23 kcal% carbohydrate, and 27 kcal% protein). At 13 wk of age, rats were killed and splenocytes were isolated. Immune cell subsets were determined by flow cytometry. Immune cell function was determined by measuring the ex vivo cytokine production following stimulation with mitogens. Two-factor ANOVA was used to assess the main effect of sex, diet, and their interaction. RESULTS: Males gained more weight than females (410 ± 46 vs. 219 ± 45 g), independently of diet (P-sex < 0.01). The HFD led to a lower production of IL-2 while increasing the production of IL-10 (both P-diet ≤ 0.05), independently of sex. HFD-fed females had increased production of cytokines (IL-2 and IL-6) after stimulation with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I), as well as a higher T-helper (Th) 1:Th2 balance compared with HFD-fed males (all P < 0.05). Males fed the HFD had significantly lower production of IL-2 upon stimulation compared with all other groups. CONCLUSIONS: Female Wistar rats developed a milder obesity phenotype and maintained enhanced cytokine production compared with males fed the HFD. Sex differences modulate immune function in the context of high-fat feeding and it should be considered in research design to establish personalized health-related recommendations.


Assuntos
Dieta Hiperlipídica , Caracteres Sexuais , Animais , Carboidratos , Citocinas , Dieta Hiperlipídica/efeitos adversos , Feminino , Interleucina-2 , Masculino , Obesidade , Ratos , Ratos Wistar
19.
Cell Rep ; 34(2): 108609, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440149

RESUMO

Stiffness in the tissue microenvironment changes in most diseases and immunological conditions, but its direct influence on the immune system is poorly understood. Here, we show that static tension impacts immune cell function, maturation, and metabolism. Bone-marrow-derived and/or splenic dendritic cells (DCs) grown in vitro at physiological resting stiffness have reduced proliferation, activation, and cytokine production compared with cells grown under higher stiffness, mimicking fibro-inflammatory disease. Consistently, DCs grown under higher stiffness show increased activation and flux of major glucose metabolic pathways. In DC models of autoimmune diabetes and tumor immunotherapy, tension primes DCs to elicit an adaptive immune response. Mechanistic workup identifies the Hippo-signaling molecule, TAZ, as well as Ca2+-related ion channels, including potentially PIEZO1, as important effectors impacting DC metabolism and function under tension. Tension also directs the phenotypes of monocyte-derived DCs in humans. Thus, mechanical stiffness is a critical environmental cue of DCs and innate immunity.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , Imunoterapia/métodos , Rigidez Vascular/imunologia , Humanos , Transdução de Sinais
20.
Cell Metab ; 30(6): 997-999, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801058

RESUMO

For nearly a decade, B cells residing locally within the adipose tissue have been linked to the control of metabolic homeostasis. In this issue, Camell et al. (2019) report an expansion of a unique age-associated B cell population in the visceral adipose tissue that regulates insulin resistance and adipose dysfunction during aging.


Assuntos
Inflamassomos , Resistência à Insulina , Tecido Adiposo , Envelhecimento , Linfócitos B , Homeostase , Humanos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA