Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 176: 108557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728995

RESUMO

BACKGROUND: Heart failure (HF), a global health challenge, requires innovative diagnostic and management approaches. The rapid evolution of deep learning (DL) in healthcare necessitates a comprehensive review to evaluate these developments and their potential to enhance HF evaluation, aligning clinical practices with technological advancements. OBJECTIVE: This review aims to systematically explore the contributions of DL technologies in the assessment of HF, focusing on their potential to improve diagnostic accuracy, personalize treatment strategies, and address the impact of comorbidities. METHODS: A thorough literature search was conducted across four major electronic databases: PubMed, Scopus, Web of Science and IEEE Xplore, yielding 137 articles that were subsequently categorized into five primary application areas: cardiovascular disease (CVD) classification, HF detection, image analysis, risk assessment, and other clinical analyses. The selection criteria focused on studies utilizing DL algorithms for HF assessment, not limited to HF detection but extending to any attempt in analyzing and interpreting HF-related data. RESULTS: The analysis revealed a notable emphasis on CVD classification and HF detection, with DL algorithms showing significant promise in distinguishing between affected individuals and healthy subjects. Furthermore, the review highlights DL's capacity to identify underlying cardiomyopathies and other comorbidities, underscoring its utility in refining diagnostic processes and tailoring treatment plans to individual patient needs. CONCLUSIONS: This review establishes DL as a key innovation in HF management, highlighting its role in advancing diagnostic accuracy and personalized care. The insights provided advocate for the integration of DL in clinical settings and suggest directions for future research to enhance patient outcomes in HF care.


Assuntos
Aprendizado Profundo , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico
2.
Chaos Solitons Fractals ; 166: 112914, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36440087

RESUMO

The prevalence of COVID-19 has been the most serious health challenge of the 21th century to date, concerning national health systems on a daily basis, since December 2019 when it appeared in Wuhan City. Nevertheless, most of the proposed mathematical methodologies aiming to describe the dynamics of an epidemic, rely on deterministic models that are not able to reflect the true nature of its spread. In this paper, we propose a SEIHCRDV model - an extension/improvement of the classic SIR compartmental model - which also takes into consideration the populations of exposed, hospitalized, admitted in intensive care units (ICU), deceased and vaccinated cases, in combination with an unscented Kalman filter (UKF), providing a dynamic estimation of the time dependent system's parameters. The stochastic approach is considered necessary, as both observations and system equations are characterized by uncertainties. Apparently, this new consideration is useful for examining various pandemics more effectively. The reliability of the model is examined on the daily recordings of COVID-19 in France, over a long period of 265 days. Two major waves of infection are observed, starting in January 2021, which signified the start of vaccinations in Europe providing quite encouraging predictive performance, based on the produced NRMSE values. Special emphasis is placed on proving the non-negativity of SEIHCRDV model, achieving a representative basic reproductive number R 0 and demonstrating the existence and stability of disease equilibria according to the formula produced to estimate R 0 . The model outperforms in predictive ability not only deterministic approaches but also state-of-the-art stochastic models that employ Kalman filters. Furthermore, the relevant analysis supports the importance of vaccination, as even a small increase in the dialy vaccination rate could lead to a notable reduction in mortality and hospitalizations.

3.
Int J Numer Method Biomed Eng ; 38(11): e3644, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053812

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life, being responsible for 20% of sudden cardiac deaths before the age of 35. The effective and punctual diagnosis of this disease based on electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality. In our analysis, we first outline the digitalization process of paper-based ECG signals enhanced by a spatial filter aiming to eliminate dark regions in the dataset's images that do not correspond to ECG waveform, producing undesirable noise. Next, we propose the utilization of a low-complexity convolutional neural network for the detection of an arrhythmogenic heart disease, that has not been studied through the usage of deep learning methodology to date, achieving high classification accuracy, namely 99.98% training and 98.6% testing accuracy, on a disease the major identification criterion of which are infinitesimal millivolt variations in the ECG's morphology, in contrast with other arrhythmogenic abnormalities. Finally, by performing spectral analysis we investigate significant differentiations in the field of frequencies between normal ECGs and ECGs corresponding to patients suffering from ARVC. In 16 out of the 18 frequencies where we encounter statistically significant differentiations, the normal ECGs are characterized by greater normalized amplitudes compared to the abnormal ones. The overall research carried out in this article highlights the importance of integrating mathematical methods into the examination and effective diagnosis of various diseases, aiming to a substantial contribution to their successful treatment.


Assuntos
Displasia Arritmogênica Ventricular Direita , Humanos , Displasia Arritmogênica Ventricular Direita/diagnóstico , Inteligência Artificial , Eletrocardiografia , Arritmias Cardíacas/diagnóstico , Redes Neurais de Computação
4.
J Appl Stat ; 49(2): 317-335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707209

RESUMO

This paper concerns Kalman filtering when the measurements of the process are censored. The censored measurements are addressed by the Tobit model of Type I and are one-dimensional with two censoring limits, while the (hidden) state vectors are multidimensional. For this model, Bayesian estimates for the state vectors are provided through a recursive algorithm of Kalman filtering type. Experiments are presented to illustrate the effectiveness and applicability of the algorithm. The experiments show that the proposed method outperforms other filtering methodologies in minimizing the computational cost as well as the overall Root Mean Square Error (RMSE) for synthetic and real data sets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA