Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0198256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870545

RESUMO

Enzastaurin is a Protein Kinase C-ß selective inhibitor that was developed to treat cancers. Protein Kinase C-ß is an important enzyme for a variety of neuronal functions; in particular, previous rodent studies have reported deficits in spatial and fear-conditioned learning and memory with lower levels of Protein Kinase C-ß. Due to Enzastaurin's mechanism of action, the present study investigated the consequences of Enzastaurin exposure on learning and memory in 12-month-old Fischer-344 male rats. Rats were treated daily with subcutaneous injections of either vehicle or Enzastaurin, and behaviorally tested using the spatial reference memory Morris Water Maze. Rats treated with Enzastaurin exhibited decreased overnight retention and poorer performance on the latter testing day, indicating a mild, but significant, memory impairment. There were no differences during the probe trial indicating that all animals were able to spatially localize the platform to the proper quadrant by the end of testing. RNA isolated from the hippocampus was analyzed using Next Generation Sequencing (Illumina). No statistically significant transcriptional differences were noted. Our findings suggest that acute Enzastaurin treatment can impair hippocampal-based learning and memory performance, with no effects on transcription in the hippocampus. We propose that care should be taken in future clinical trials that utilize Protein Kinase C-ß inhibitors, to monitor for possible cognitive effects, future research should examine if these effects are fully reversible.


Assuntos
Envelhecimento/metabolismo , Comportamento Animal/efeitos dos fármacos , Indóis/efeitos adversos , Transtornos da Memória , Memória/efeitos dos fármacos , Proteína Quinase C beta/antagonistas & inibidores , Envelhecimento/genética , Animais , Indóis/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/enzimologia , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Ratos , Ratos Endogâmicos F344
2.
Epilepsia ; 58 Suppl 2: 22-31, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591478

RESUMO

Hypothalamic hamartomas (HHs) are congenital malformations of the ventral hypothalamus resulting in treatment-resistant epilepsy and are intrinsically epileptogenic for the gelastic seizures that are the hallmark symptom of this disorder. This paper reviews the neuropathologic features of HHs associated with epilepsy, with an emphasis on characterizing neuron phenotypes and an ultimate goal of understanding the cellular model of ictogenesis occurring locally within this tissue. We also present previously unpublished findings on Golgi staining of HH. The microarchitecture of HH is relatively simple, with nodular clusters of neurons that vary in size and abundance with poorly defined boundaries. Approximately 80-90% of HH neurons have an interneuron-like phenotype with small, round soma and short, unbranched processes that lack spines. These neurons express glutamic acid decarboxylase and likely utilize γ-aminobutyric acid (GABA) as their primary neurotransmitter. They have intrinsic membrane properties that lead to spontaneous pacemaker-like firing activity. The remaining HH neurons are large cells with pleomorphic, often pyramidal, soma and dendrites that are more likely to be branched and have spines. These neurons appear to be excitatory, projection-type neurons, and have the functionally immature behavior of depolarizing and firing in response to GABA ligands. We hypothesize that the irregular neuronal clusters are the functional unit for ictogenesis. Further research to define and characterize these local networks is required to fully understand the cellular mechanisms responsible for gelastic seizures.


Assuntos
Epilepsias Parciais/patologia , Hamartoma/patologia , Doenças Hipotalâmicas/patologia , Adulto , Criança , Transtornos do Comportamento Infantil/fisiopatologia , Transtornos do Comportamento Infantil/psicologia , Transtornos do Comportamento Infantil/cirurgia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/cirurgia , Dendritos/patologia , Dendritos/fisiologia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Hamartoma/fisiopatologia , Hamartoma/cirurgia , Humanos , Doenças Hipotalâmicas/fisiopatologia , Doenças Hipotalâmicas/cirurgia , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Hipotálamo/cirurgia , Imageamento por Ressonância Magnética , Neurônios/patologia , Neurônios/fisiologia , Técnicas de Patch-Clamp
3.
EBioMedicine ; 8: 96-102, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27428422

RESUMO

Human hypothalamic hamartoma (HH) is a rare subcortical lesion associated with treatment-resistant epilepsy. Cellular mechanisms responsible for epileptogenesis are unknown. We hypothesized that neuronal gap junctions contribute to epileptogenesis through synchronous activity within the neuron networks in HH tissue. We studied surgically resected HH tissue with Western-blot analysis, immunohistochemistry, electron microscopy, biocytin microinjection of recorded HH neurons, and microelectrode patch clamp recordings with and without pharmacological blockade of gap junctions. Normal human hypothalamus tissue was used as a control. Western blots showed increased expression of both connexin-36 (Cx36) and connexin-43 (Cx43) in HH tissue compared with normal human mammillary body tissue. Immunohistochemistry demonstrated that Cx36 and Cx43 are expressed in HH tissue, but Cx36 was mainly expressed within neuron clusters while Cx43 was mainly expressed outside of neuron clusters. Gap-junction profiles were observed between small HH neurons with electron microscopy. Biocytin injection into single recorded small HH neurons showed labeling of adjacent neurons, which was not observed in the presence of a neuronal gap-junction blocker, mefloquine. Microelectrode field recordings from freshly resected HH slices demonstrated spontaneous ictal/interictal-like discharges in most slices. Bath-application of gap-junction blockers significantly reduced ictal/interictal-like discharges in a concentration-dependent manner, while not affecting the action-potential firing of small gamma-aminobutyric acid (GABA) neurons observed with whole-cell patch-clamp recordings from the same patient's HH tissue. These results suggest that neuronal gap junctions between small GABAergic HH neurons participate in the genesis of epileptic-like discharges. Blockade of gap junctions may be a new therapeutic strategy for controlling seizure activity in HH patients.


Assuntos
Epilepsia/etiologia , Epilepsia/metabolismo , Junções Comunicantes/metabolismo , Hamartoma/complicações , Hamartoma/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/metabolismo , Adolescente , Adulto , Carbenoxolona/farmacologia , Criança , Pré-Escolar , Conexinas/genética , Conexinas/metabolismo , Fenômenos Eletrofisiológicos , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Expressão Gênica , Hamartoma/cirurgia , Humanos , Doenças Hipotalâmicas/cirurgia , Lactente , Masculino , Neurônios/metabolismo , Neurônios/ultraestrutura , Adulto Jovem
4.
Front Aging Neurosci ; 7: 149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26321945

RESUMO

In women, high levels of natural progesterone have been associated with detrimental cognitive effects via the "maternal amnesia" phenomenon as well as in controlled experiments. In aged ovariectomized (Ovx) rats, progesterone has been shown to impair cognition and impact the GABAergic system in cognitive brain regions. Here, we tested whether the GABAergic system is a mechanism of progesterone's detrimental cognitive effects in the Ovx rat by attempting to reverse progesterone-induced impairments via concomitant treatment with the GABAA antagonist, bicuculline. Thirteen month old rats received Ovx plus daily vehicle, progesterone, bicuculline, or progesterone+bicuculline injections beginning 2 weeks prior to testing. The water radial-arm maze was used to evaluate spatial working and reference memory. During learning, rats administered progesterone made more working memory errors than those administered vehicle, and this impairment was reversed by the addition of bicuculline. The progesterone impairment was transient and all animals performed similarly by the end of regular testing. On the last day of testing, a 6 hour delay was administered to evaluate memory retention. Progesterone-treated rats were the only group to increase working memory errors with the delay relative to baseline performance; again, the addition of bicuculline prevented the progesterone-induced impairment. The vehicle, bicuculline, and progesterone+bicuculline groups were not impaired by the delay. The current rodent findings corroborate prior research reporting progesterone-induced detriments on cognition in women and in the aging Ovx rat. Moreover, the data suggest that the progesterone-induced cognitive impairment is, in part, related to the GABAergic system. Given that progesterone is included in numerous clinically-prescribed hormone therapies and contraceptives (e.g., micronized), and as synthetic analogs, further research is warranted to better understand the parameters and mechanism(s) of progesterone-induced cognitive impairments.

5.
Psychoneuroendocrinology ; 54: 1-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25679306

RESUMO

Ethinyl Estradiol (EE), a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives, and is found in at least 30 different contraceptive formulations currently prescribed to women as well as hormone therapies prescribed to menopausal women. Thus, EE is prescribed clinically to women at ages ranging from puberty to reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection, modeling the daily rise and fall of serum EE levels with oral regimens. Study II also investigated the impact of low, medium and high doses of EE on the basal forebrain cholinergic system. The low and medium doses utilized here correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. We evaluate cognition using a battery of maze tasks tapping several domains of spatial learning and memory as well as basal forebrain cholinergic integrity using immunohistochemistry and unbiased stereology to estimate the number of choline acetyltransferase (ChAT)-producing cells in the medial septum and vertical/diagonal bands. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; tonic delivery of low EE, a dose that corresponds to the most popular doses used in the clinic today, did not impact cognition on any measure. Both medium and high injection doses of EE reduced the number of ChAt-immunoreactive cells in the basal forebrain, and cell population estimates in the vertical/diagonal bands negatively correlated with working memory errors.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Cognição/efeitos dos fármacos , Etinilestradiol/toxicidade , Transtornos da Memória/induzido quimicamente , Animais , Anticoncepcionais Orais/administração & dosagem , Anticoncepcionais Orais/toxicidade , Relação Dose-Resposta a Droga , Esquema de Medicação , Etinilestradiol/administração & dosagem , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
6.
Steroids ; 99(Pt A): 16-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25159107

RESUMO

Androstenedione, the main circulating ovarian hormone present after menopause, has been shown to positively correlate with poor spatial memory in an ovary-intact rodent model of follicular depletion, and to impair spatial memory when administered exogenously to surgically menopausal ovariectomized rats. Androstenedione can be converted directly to estrone via the aromatase enzyme, or to testosterone. The current study investigated the hormonal mechanism underlying androstenedione-induced cognitive impairments. Young adult ovariectomized rats were given either androstenedione, androstenedione plus the aromatase inhibitor anastrozole to block conversion to estrone, androstenedione plus the androgen receptor blocker flutamide to block androgen receptor activity, or vehicle treatment, and were then administered a battery of learning and memory maze tasks. Since we have previously shown that estrone administration to ovariectomized rats impaired cognition, we hypothesized that androstenedione's conversion to estrone underlies, in part, its negative cognitive impact. Here, androstenedione administration impaired spatial reference and working memory. Further, androstenedione did not induce memory deficits when co-administered with the aromatase inhibitor, anastrozole, whereas pharmacological blockade of the androgen receptor failed to block the cognitive impairing effects of androstenedione. Anastrozole alone did not impact performance on any cognitive measure. The current data support the tenet that androstenedione impairs memory through its conversion to estrone, rather than via actions on the androgen receptor. Studying the effects of aromatase and estrogen metabolism is critical to elucidating how hormones impact women's health across the lifespan, and results hold important implications for understanding and optimizing the hormone milieu from the many endogenous and exogenous hormone exposures across the lifetime.


Assuntos
Androstenodiona/metabolismo , Inibidores da Aromatase/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Nitrilas/farmacologia , Receptores Androgênicos/metabolismo , Triazóis/farmacologia , Anastrozol , Antagonistas de Androgênios/farmacologia , Androstenodiona/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Estrona/sangue , Estrona/metabolismo , Feminino , Flutamida/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Menopausa , Ovariectomia , Ratos Endogâmicos F344 , Útero/efeitos dos fármacos
7.
Front Behav Neurosci ; 8: 294, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249951

RESUMO

We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller's classic description of a processing-inclusive human working memory capacity of 7 ± 2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning.

8.
Eur J Neurosci ; 36(8): 3086-95, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22758646

RESUMO

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle-depleted ovaries. In two independent studies, in rodents that had undergone ovarian follicular depletion, we found that higher endogenous serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that higher androstenedione levels impair memory. The current study directly tested this hypothesis, examining the cognitive effects of exogenous androstenedione administration in rodents. Middle-aged ovariectomised rats received vehicle or one of two doses of androstenedione. Rats were tested on a spatial working and reference memory maze battery including the water-radial arm maze, Morris water maze (MM) and delay match-to-sample task. Androstenedione at the highest dose impaired reference memory as well as the ability to maintain performance as memory demand was elevated. This was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. We measured glutamic acid decarboxylase (GAD) protein in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system relates to androstenedione-induced memory impairments. Results showed that higher entorhinal cortex GAD levels were correlated with worse MM performance, irrespective of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle-depleted ovary, is detrimental to working memory, reference memory and memory retention. Furthermore, while spatial reference memory performance might be related to the GABAergic system, it does not appear to be altered with androstenedione administration, at least at the doses used in the current study.


Assuntos
Androstenodiona/sangue , Transtornos da Memória/sangue , Animais , Córtex Entorrinal/metabolismo , Feminino , Glutamato Descarboxilase/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo , Menopausa/sangue , Menopausa/fisiologia , Ovariectomia , Ratos , Ratos Endogâmicos F344 , Retenção Psicológica
9.
Horm Behav ; 62(1): 1-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22522079

RESUMO

CEE (conjugated equine estrogens) is the most widely prescribed estrogen-only menopausal hormone therapy in the United States, and is comprised of over 50% estrone (E1) sulfate. Following CEE administration, E1 is the principal circulating estrogen. However, the cognitive and neurobiological effects of E1 in a middle-aged rodent model have not yet been evaluated. We assessed cognitive effects of continuous E1 treatment in middle-aged surgically menopausal rats using a maze battery. We also quantified number of choline acetyltransferase-immunoreactive (ChAT-IR) neurons in distinct basal forebrain regions known in earlier studies in to be impacted by the most potent naturally-circulating estrogen in rodents and women, 17ß-estradiol (17ß-E2), as well as CEE. On the spatial working memory delayed-match-to-sample water maze, the highest E1 dose impaired memory performance during acquisition and after delay challenge. E1 did not impact ChAT-IR neuron number in the medial septum (MS) or horizontal/vertical diagonal bands. In a comparison study, 17ß-E2 increased MS ChAT-IR neuron number. Findings indicate that E1 negatively impacts spatial working memory and memory retention, and does not increase ChAT-IR neuron number in basal forebrain, as does 17ß-E2. Thus, data from prior studies suggest that 17ß-E2 and CEE can enhance cognition and increase number of ChAT-IR basal forebrain neurons, while here we show that E1 does not induce these effects. Findings from preclinical basic science studies can inform the design of specific combinations of estrogens that could be beneficial to the brain and cognition. Accumulating data suggest that E1 is not likely to be among these key beneficial estrogens.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Estrogênios Conjugados (USP)/efeitos adversos , Estrona/efeitos adversos , Memória/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios/efeitos adversos , Estrogênios/administração & dosagem , Estrogênios/efeitos adversos , Estrogênios Conjugados (USP)/administração & dosagem , Estrona/administração & dosagem , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Menopausa/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Endogâmicos F344
10.
Neurobiol Aging ; 32(4): 680-97, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19883953

RESUMO

Premarin™ is the most commonly prescribed estrogenic component of hormone therapy, given since 1942. The current study is the first examining cognitive effects of tonic Premarin treatment in an animal model. Middle-aged ovariectomized (Ovx) rats received vehicle or one of three doses of Premarin (12, 24 or 36µg daily). Rats were tested on a spatial working and reference memory maze battery. Both medium- and high-dose Premarin enhanced memory retention, while low-dose Premarin impaired learning and memory retention. Correlations with serum hormone levels showed that as the ratio of estrone:17ß-estradiol increased, animals tended to show better working memory performance. Taken together with the dissociation of dose-specific estrogenic profiles, results suggest that higher levels of estrone, in the presence of 17ß-estradiol concentrations higher than that of Ovx levels, may be beneficial for memory. Moreover, Premarin exerted dose and brain-region specific effects on BDNF and NGF protein levels, with most marked changes in cingulate and perirhinal cortices. Hippocampal gene expression profiling demonstrated significant Premarin-induced transcriptional changes in genes linked to plasticity and cognition. These findings indicate that Premarin can impact memory and the brain, and that dosing should be recognized as a clinically relevant factor possibly affecting the direction and efficacy of cognitive outcome.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estrogênios Conjugados (USP)/farmacologia , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fator de Crescimento Neural/genética , Ovariectomia , Ratos , Ratos Endogâmicos F344 , Percepção Espacial/efeitos dos fármacos , Esfregaço Vaginal
11.
Endocrinology ; 150(9): 4248-59, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19470706

RESUMO

Clinical research suggests that type of ovarian hormone loss at menopause influences cognition. Until recently ovariectomy (OVX) has been the primary rodent model to examine effects of ovarian hormone loss on cognition. This model limits evaluations to abrupt and complete ovarian hormone loss, modeling less than 13% of women who receive surgical menopause. The majority of women do not have their ovaries surgically removed and undergo transitional hormone loss via ovarian follicular depletion. 4-Vinylcyclohexene-diepoxide (VCD) produces gradual ovarian follicular depletion in the rodent, with hormone profiles more similar to naturally menopausal women vs. OVX. We directly compared VCD and OVX models to examine whether type of hormone loss (transitional vs. surgical) impacted cognition as assessed on a maze battery as well as the cholinergic system tested via scopolamine mnemonic challenge and brain acetylcholinesterase activity. Middle-aged rats received either sham surgery, OVX surgery, VCD, or VCD then OVX to assess effects of removal of residual ovarian output after transitional menopause and follicular depletion. VCD-induced transitional menopause impaired learning of a spatial recent memory task; surgical removal of residual ovarian hormones by OVX abolished this negative effect of transitional menopause. Furthermore, transitional menopause before OVX was better for memory than an abrupt loss of hormones via OVX only. Surgical ovarian hormone loss, regardless of menopause history, increased hippocampal acetylcholinesterase activity. Circulating gonadotropin and androstenedione levels were related to cognitive competence. Collectively, findings suggest that in the rat, initiation of transitional menopause before surgical ovary removal can benefit mnemonic function and could obviate some negative cognitive consequences of surgical menopause alone.


Assuntos
Cognição/efeitos dos fármacos , Menopausa/fisiologia , Ovariectomia , Animais , Cicloexenos/farmacologia , Feminino , Hormônios Gonadais/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Ratos , Comportamento Espacial/efeitos dos fármacos , Compostos de Vinila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA