Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405756, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721710

RESUMO

Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in-depth understanding of Ovs in S-scheme heterojunction photocatalysts are still limited. Herein, a novel S-scheme photocatalyst made from WO3-Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S-scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs-TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S-scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3-Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S-scheme photocatalysts.

2.
Small ; : e2309780, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433392

RESUMO

The conventional sea water desalination technologies are not yet adopted worldwide, especially in the third world countries due to their high capital cost as well as large energy requirement. To solve this issue in a sustainable way an interfacial solar water evaporation device is designed and proposed in this article using the branches of Prunus serrulata (PB). The PB has abundant microchannels and shows excellent photothermal conversion capability after carbonization. Moreover, the easy access to raw materials and the facile fabrication process makes the solar water evaporating device very cost effective for seawater desalination application. Experiments show that in the presence of the fabricated evaporator the evaporation rate of water can reach 3.5 kg m-2  h-1 under 1 sun, which is superior to many similar experimental devices. In addition, its advantages, such as effective sewage purification capability, low cost, and environmental friendliness, make this evaporator highly competitive in the extensive promotion of this technology and can be considered as a new sustainable solution for seawater desalination with great application potential and prospects.

3.
Small Methods ; 8(2): e2300239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37356086

RESUMO

2D semi-metallic hafnium ditelluride material is used in several applications such as solar steam generation, gas sensing, and catalysis owing to its strong near-infrared absorbance, high sensitivity, and distinctive electronic structure. The zero-bandgap characteristics, along with the thermal and dynamic stability of 2D-HfTe2, make it a desirable choice for developing long-wavelength-range photonics devices. Herein, the HfTe2 -nanosheets are prepared using the liquid-phase exfoliation method, and their superior nonlinear optical properties are demonstrated by the obtained modulation depth of 11.9% (800 nm) and 6.35% (1560 nm), respectively. In addition, the observed transition from saturable to reverse saturable absorption indicates adaptability of the prepared material in nonlinear optics. By utilizing a side polished fiber-based HfTe2 -saturable absorber (SA) inside an Er-doped fiber laser cavity, a mode-locked laser with 724 fs pulse width and 56.63 dB signal-to-noise ratio (SNR) is realized for the first time. The generated laser with this SA has the second lowest mode-locking pump threshold (18.35 mW), among the other 2D material based-SAs, thus paving the way for future laser development with improved efficiency and reduced thermal impact. Finally, employing this HfTe2 -SA, a highly stable single-frequency fiber laser (SNR ≈ 74.56 dB; linewidth ≈ 1.268 kHz) is generated for the first time, indicating its promising ultranarrow photonic application.

4.
Nano Lett ; 23(17): 8241-8248, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37594857

RESUMO

Next-generation mid-infrared (MIR) imaging chips demand free-cooling capability and high-level integration. The rising two-dimensional (2D) semimetals with excellent infrared (IR) photoresponses are compliant with these requirements. However, challenges remain in scalable growth and substrate-dependence for on-chip integration. Here, we demonstrate the inch-level 2D palladium ditelluride (PdTe2) Dirac semimetal using a low-temperature self-stitched epitaxy (SSE) approach. The low formation energy between two precursors facilitates low-temperature multiple-point nucleation (∼300 °C), growing up, and merging, resulting in self-stitching of PdTe2 domains into a continuous film, which is highly compatible with back-end-of-line (BEOL) technology. The uncooled on-chip PdTe2/Si Schottky junction-based photodetector exhibits an ultrabroadband photoresponse of up to 10.6 µm with a large specific detectivity. Furthermore, the highly integrated device array demonstrates high-resolution room-temperature imaging capability, and the device can serve as an optical data receiver for IR optical communication. This study paves the way toward low-temperature growth of 2D semimetals for uncooled MIR sensing.

5.
Langmuir ; 38(43): 13187-13194, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255348

RESUMO

Interfacial solar steam generation (ISSG) is considered as an excellent seawater desalination technology because of its electricity-independent nature, low cost, and portability. However, improving the water evaporation efficiency, simplifying the fabrication process, and reducing the overall cost of the evaporator are still challenging. Here, an efficient and sustainable solar water evaporator is fabricated with carbonized ginkgo biloba leaves as the structural basis of photothermal materials. The combination of the abundant capillary channels in ginkgo leaves paired with polyacrylamide (PAM) hydrogel accelerates water transportation and solar-driven evaporation. The fabricated evaporator shows excellent photothermal conversion capability and evaporates water at 2.39 kg m-2 h-1 under 1 sun irradiation. In addition, the device exhibits remarkable stability in simulated seawater and can effectively realize seawater desalination or sewage treatment. As a result, the system is promising for future highly efficient solar evaporation due to its environmental protection and low cost.


Assuntos
Energia Solar , Purificação da Água , Água , Luz Solar , Vapor
6.
ACS Omega ; 7(32): 28265-28274, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35983370

RESUMO

A novel rectangular patch antenna based on multiwall carbon nanotubes has been designed and developed for assisting the initial detection of COVID-19-affected lungs. Due to their highly conductive nature, each nanotube echoes electromagnetic waves in a unique manner, influencing the increase in bandwidth. The proposed antenna operates at 6.63, 7.291, 7.29, and 7.22 GHz with a higher bandwidth classified as an ultrawide band and can be used on a human body phantom model because of its flexibility and decreased radiation qualities. Flame retardant 4 is chosen as a substrate with a uniform thickness of 1.62 mm due to its inexpensive cost and excellent electrical properties. The maximum specific absorption rate of the proposed antenna is obtained as 1.77 W/kg for 10 g of tissues. For testing purposes, a model including all the known features of COVID-19-affected lungs is developed. The designed antenna exhibits excellent performance in free space, normal lungs, and affected lung environments. It might be utilized as a first screening device for COVID-19 patients, especially in resource-constrained areas where traditional medical equipment such as X-ray and computerized tomography scans are scarce.

7.
ACS Nano ; 16(8): 12390-12402, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35876327

RESUMO

The nonlinear optical (NLO) properties of two-dimensional (2D) materials are fascinating for fundamental physics and optoelectronic device development. However, relatively few investigations have been conducted to establish the combined NLO activities of a 2D material. Herein, a study of numerous NLO properties of 2D gallium sulfide (GaS), including second-harmonic generation (SHG), two-photon excited fluorescence (TPEF), and NLO absorption are presented. The layer-dependent SHG response of 2D GaS identifies the noncentrosymmetric nature of the odd layers, and the second-order susceptibility (χ2) value of 47.98 pm/V (three-layers of GaS) indicates the superior efficiency of the SHG signal. In addition, structural deformation induces the symmetry breaking and facilitates the SHG in the bulk samples, whereas a possible efficient symmetry breaking in the liquid-phase exfoliated samples results in an enhancement of the SHG signal, providing prospective fields of investigation for researchers. The generation of TPEF from 800 to 860 nm depicts the two-photon absorption characteristics of 2D GaS material. Moreover, the saturable absorption characteristics of 2D GaS are realized from the largest nonlinear absorption coefficient (ß) of -9.3 × 103, -91.0 × 103, and -6.05 × 103 cm/GW and giant modulation depths (Ts) of 24.4%, 35.3%, and 29.1% at three different wavelengths of 800, 1066, and 1560 nm, respectively. Hence, such NLO activities indicate that 2D GaS material can facilitate in the technical advancements of future nonlinear optoelectronic devices.

8.
ACS Appl Mater Interfaces ; 14(9): 11645-11653, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191665

RESUMO

In this study, optical multispectral sensors based on perovskite semiconductors have been proposed, simulated, and characterized. The perovskite material system combined with the 3D vertical integration of the sensor channels allow for realizing sensors with high sensitivities and a high spectral resolution. The sensors can be applied in several emerging areas, including biomedical imaging, surveillance, complex motion planning of autonomous robots or vehicles, artificial intelligence, and agricultural applications. The sensor elements can be vertically integrated on a readout electronic to realize sensor arrays and multispectral digital cameras. In this study, three- and six-channel vertically stacked perovskite sensors are optically designed, electromagnetically simulated, and colorimetrically characterized to evaluate the color reproduction. The proposed sensors allow for the implementation of snapshot cameras with high sensitivity. The proposed sensor is compared to other sensor technologies in terms of sensitivity and selectivity.

9.
ACS Appl Mater Interfaces ; 14(6): 7936-7948, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119819

RESUMO

With the advancement of civilization, water purification, as well as management and disposal of ever-increasing municipal solid waste (MSW), and e-waste, have become global concerns. To address these issues in a sustainable way, a 3D solar evaporator has been proposed in this paper by repurposing recycled paper from MSW in the form of egg trays and waste dry toner (e-waste) using a facile fabrication method. The unique 3D porous structure, fibrous surface, superior water absorbing capability as well as low thermal conductivity of wastepaper-derived egg trays make them an excellent candidate for an efficient solar evaporator, while the waste toner powder coating significantly enhances the optical absorbance capacity. Under 1 sun illumination, the proposed solar evaporator demonstrates an excellent evaporation rate and efficiency of 1.3 kg/m2 h and 78.5%, respectively. Moreover, the competitive advantage of the 3D structure in collecting solar irradiance at various light incident angles in comparison to a 2D structure, excellent cycle stability, low processing temperature, and the use of low-cost waste materials enable its use for large-scale water purification systems.

10.
ACS Appl Mater Interfaces ; 13(51): 61518-61527, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34793123

RESUMO

Two-dimensional (2D) gallium sulfide (GaS) offers a plethora of exceptional electrical and optical properties, allowing it to be used in a wide range of applications, including photodetectors, hydrogen generation, and nonlinear optical devices. In this paper, ultrathin 2D GaS nanosheets are synthesized using the liquid-phase exfoliation method, and the structure, morphology, and chemical composition of the as-prepared nanosheets are extensively investigated. After depositing 2D GaS nanosheets on side polished fibers, successful saturable absorbers (SAs) are fabricated for the first time. The realized modulation depths are 10 and 5.3% at 1 and 1.5 µm, respectively, indicating the wideband saturable absorption performance of the prepared SAs. By integrating GaS-SAs into three different wavelength-based fiber laser cavities, stable mode-locked pulses are achieved, having pulse durations of 46.22 ps (1 µm), 614 fs (1.5 µm), and 1.02 ps (2 µm), respectively. Additionally, different orders of harmonic mode-locked pulses with the highest repetition rate of 0.55 GHz (45th order) and Q-switched pulses with the shortest pulse duration of 2.2 µs are obtained in the telecommunication waveband. These findings suggest that 2D GaS has a lot of potential for broadband ultrafast photonics in nonlinear photonics devices.

11.
ACS Appl Mater Interfaces ; 13(35): 41791-41801, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431296

RESUMO

Room-temperature infrared photodetectors are in great demand because of their vitally important applications in the military and civilian fields, which has inspired intensive studies in recent decades. Here, we present the fabrication of a large-size PdSe2/CdTe mixed-dimensional van der Waals (vdW) heterojunction for room-temperature infrared detection. Taking advantage of the wide light absorption of the multilayer PdSe2, high-quality vdW interface, and unique mixed-dimensional device geometry, the present device is capable of detecting an ultrawide light up to long-wave infrared (LWIR) of 10.6 µm at room temperature. In addition, our photodetector exhibits a good capability to follow short pulse infrared signals with a quick response rate of 70 ns, a large responsivity of 324.7 mA/W, and a reasonable specific detectivity of 3.3 × 1012 Jones. Significantly, the assembled photodetector is highly sensitive to a polarized infrared light signal with a decent polarization sensitivity of 4.4. More importantly, an outstanding LWIR imaging capability based on the PdSe2/CdTe vdW heterojunction at nonrefrigeration condition is demonstrated. Our work paves a novel route for the design of highly polarization-sensitive, room-temperature infrared photodetectors.

12.
Nanomicro Lett ; 13(1): 36, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34138244

RESUMO

The photovoltaic performance of perovskite solar cells (PSCs) can be improved by utilizing efficient front contact. However, it has always been a significant challenge for fabricating high-quality, scalable, controllable, and cost-effective front contact. This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells (TSCs). As a critical part of the front contact, we prepared a highly compact titanium oxide (TiO2) film by industrially viable Spray Pyrolysis Deposition (SPD), which acts as a potential electron transport layer (ETL) for the fabrication of PSCs. Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs. As the front contact has a significant influence on the optoelectronic properties of PSCs, hence, we investigated the optics and electrical effects of PSCs by three-dimensional (3D) finite-difference time-domain (FDTD) and finite element method (FEM) rigorous simulations. The investigation allows us to compare experimental results with the outcome from simulations. Furthermore, an optimized single-junction PSC is designed to enhance the energy conversion efficiency (ECE) by > 30% compared to the planar reference PSC. Finally, the study has been progressed to the realization of all-perovskite TSC that can reach the ECE, exceeding 30%. Detailed guidance for the completion of high-performance PSCs is provided.

13.
Nanotechnology ; 32(5): 055201, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33059334

RESUMO

In-plane anisotropic two-dimensional (2D) materials have gained considerable interest in the field of research, due to having the potential of being used in different device applications. Recently, among these 2D materials, group 10 transition metal dichalcogenides (TMDs) pentagonal Palladium diselenide (PdSe2) is utilized in various sections of researches like nanoelectronics, thermoelectric, spintronics, optoelectronics, and ultrafast photonics, owing to its high air stability and broad absorption spectrum properties. In this paper, it is demonstrated that by utilizing this novel 2D layered PdSe2 material as a saturable absorber (SA) in an EDF laser system, it is possible to obtain switchable laser pulse generation modes. At first, the Q-switching operation mode is attained at a threshold pump power of 56.8 mW at 1564 nm, where the modulation range of pulse duration and repetition rate is 18.5 µs-2.0 µs and 16.4 kHz-57.0 kHz, respectively. Afterward, the laser pulse generation mode is switched to the mode-locked state at a pump power of 63.1 mW (threshold value) by changing the polarization condition inside the laser cavity, and this phenomenon persists until the maximum pump power of 230.4 mW. For this mode-locking operation, the achieved pulse duration is 766 fs, corresponding to the central wavelength and 3 dB bandwidth of 1566 nm and 4.16 nm, respectively. Finally, it is illustrated that PdSe2 exhibits a modulation depth of 7.01%, which substantiates the high nonlinearity of the material. To the best of the authors' knowledge, this is the first time of switchable modes for laser pulse generation are achieved by using this PdSe2 SA. Therefore, this work will encourage the research community to carry out further studies with this PdSe2 material in the future.

14.
Nanomaterials (Basel) ; 10(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291350

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) materials have exceptional optoelectronic and structural properties, which allow them to be utilized in several significant applications in energy, catalyst, and high-performance optoelectronic devices. Among other properties, the nonlinear optical properties are gaining much attention in the research field. In this work, a unique pentagonal TMD material, palladium disulfide (PdS2), is employed as a saturable absorber (SA) in an ytterbium-doped fiber (YDF) laser cavity and mode-locked laser pulse is generated. At first, liquid phase exfoliation is performed to prepare PdS2 nanoflakes. Afterward, the PdS2-nanoflakes solution was incorporated in the side-polished fiber (SPF) to form SPF-based PdS2-SA. By utilizing this SA, a highly stable mode-locked laser pulse is realized at pump power of 160 mW, which has a center wavelength of 1033 nm and a 3-dB spectral bandwidth of 3.7 nm. Moreover, the pulse duration, maximum power output and corresponding single-pulse energy were determined as 375 ps, 15.7 mW and 0.64 nJ, respectively. During the experiment, the mode-locked pulse remained stable till the pump power reached a value of 400 mW and, for the regulation of power, the slope efficiency is calculated at about 4.99%. These results indicate that PdS2 material is a promising nonlinear optical material for ultrafast optical applications in the near-infrared (NIR) region.

15.
Adv Mater ; 32(52): e2004412, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33169465

RESUMO

Mid-infrared (MIR) photodetection, covering diverse molecular vibrational regions and atmospheric transmission windows, is vital to civil and military purposes. Versatile use of MIR photodetectors is commonly dominated by HgCdTe alloys, InSb, and quantum superlattices, which are limited by strict operation demands, high-cost, and environmental toxicity. Despite the rapid advances of black phosphorus (BP)-based MIR photodetectors, these are subject to poor stability and large-area integration difficulty. Here, the van der Waals (vdW) epitaxial growth of a wafer-scale 2D platinum ditelluride (PtTe2 ) layer is reported via a simple tellurium-vapor transformation approach. The 2D PtTe2 layer possesses a unique mosaic-like crystal structure consisting of single-crystal domains with highly preferential [001] orientation along the normal direction, reducing the influence of interface defects and ensuring efficient out-of-plane carrier transportation. This characteristic, combined with the wide absorption of PtTe2 and well-designed vertical device architecture, makes the PtTe2 /Si Schottky junction photodetector capable of sensing ultra-broadband light of up to 10.6 µm with a high specific detectivity. Also, the photodetector exhibits an excellent room-temperature infrared-imaging capability. This approach provides a new design concept for high-performance, room-temperature MIR photodetection based on 2D layered materials.

16.
ACS Appl Mater Interfaces ; 12(42): 47831-47839, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32964715

RESUMO

Color image sensing by a smartphone or digital camera employs sensor elements with an array of color filters for capturing basic blue, green, and red color information. However, the normalized optical efficiency of such color filter-based sensor elements is limited to only one-third. Optical detectors based on perovskites are described, which can overcome this limitation. An efficient color sensor design has been proposed in this study that uses a vertically stacked arrangement of perovskite diodes. As compared to the conventional color filter-based sensors, the proposed sensor structure can potentially reach normalized optical efficiency approaching 100%. In addition, the proposed sensor design does not exhibit color aliasing or color Moiré effects, which is one of the main limitations for the filter-based sensors. Furthermore, up to our knowledge, for the first time, it could be theoretically shown that both vertically arranged sensor and conventional color filter-based sensor provide almost comparable color errors. The optical properties of the perovskite materials are determined by optical measurements in combination with an energy shift model. The optics of the stacked perovskite sensors is investigated by threedimensional finite-difference timedomain simulations. Finally, colorimetric characterization was carried out to determine the color error of the sensors.

17.
ACS Appl Mater Interfaces ; 12(13): 15080-15086, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141283

RESUMO

Perovskite/silicon tandem solar cells are considered as one of the cost-effective solutions for determining high energy conversion efficiencies. Efficient photon management allows improving light incoupling in solar cells by reducing optical losses. The optics relies upon the interface morphology, and consequently, the growth mechanism of the top cell on the bottom cell is crucial for the implementation of efficient perovskite/silicon tandem solar cells. To describe the interface morphologies of perovskite/silicon tandem solar cells, a three-dimensional surface algorithm is used that allows investigating the perovskite solar cells deposited on the textured crystalline silicon solar cells. We distinguish between two extreme cases in which the film grows only in the direction of the substrate normal or in the direction of the local surface normal. The growth mode has significant influence on the film roughness, the effective thickness of the film, the optics of the solar cell, and the photovoltaic parameters. The optics is investigated by finite-differencetime-domain simulations. The influence of the interface morphology on the photovoltaic parameters is discussed, and guidelines are provided to reach high short-circuit current density and energy conversion efficiency.

18.
Phys Rev Lett ; 125(25): 258001, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416386

RESUMO

Particle dynamics in supercooled liquids are often dominated by stringlike motions in which lines of particles perform activated hops cooperatively. The structural features triggering these motions, crucial in understanding glassy dynamics, remain highly controversial. We experimentally study microscopic particle dynamics in colloidal glass formers at high packing fractions. With a small polydispersity leading to glass-crystal coexistence, a void in the form of a vacancy in the crystal can diffuse reversibly into the glass and further induces stringlike motions. In the glass, a void takes the form of a quasivoid consisting of a few neighboring free volumes and is transported by the stringlike motions it induces. In fully glassy systems with a large polydispersity, similar quasivoid actions are observed. The mobile particles cluster into stringlike or compact geometries, but the compact ones can be further broken down into connected sequences of strings, establishing their general importance.

19.
RSC Adv ; 10(25): 14856-14866, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497161

RESUMO

Aluminum-doped and undoped zinc oxide films were investigated as potential front and rear contacts of perovskite single and perovskite/silicon tandem solar cells. The films were prepared by atomic layer deposition (ALD) at low (<200 °C) substrate temperatures. The deposited films were crystalline with a single-phase wurtzite structure and exhibit excellent uniformity and low surface roughness which was confirmed by XRD and SEM measurements. Necessary material characterizations allow for realizing high-quality films with low resistivity and high optical transparency at the standard growth rate. Spectroscopic ellipsometry measurements were carried out to extract the complex refractive index of the deposited films, which were used to study the optics of perovskite single junction and perovskite/silicon tandem solar cells. The optics was investigated by three-dimensional finite-difference time-domain simulations. Guidelines are provided on how to realize perovskite solar cells exhibiting high short-circuit current densities. Furthermore, detailed guidelines are given for realizing perovskite/silicon tandem solar cells with short-circuit current densities exceeding 20 mA cm-2 and potential energy conversion efficiencies beyond 31%.

20.
Adv Sci (Weinh) ; 6(19): 1901134, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592422

RESUMO

Group-10 transition metal dichalcogenides (TMDs) with distinct optical and tunable electrical properties have exhibited great potential for various optoelectronic applications. Herein, a self-powered photodetector is developed with broadband response ranging from deep ultraviolet to near-infrared by combining FA1- x Cs x PbI3 perovskite with PdSe2 layer, a newly discovered TMDs material. Optoelectronic characterization reveals that the as-assembled PdSe2/perovskite Schottky junction is sensitive to light illumination ranging from 200 to 1550 nm, with the highest sensitivity centered at ≈800 nm. The device also shows a large on/off ratio of ≈104, a high responsivity (R) of 313 mA W-1, a decent specific detectivity (D*) of ≈1013 Jones, and a rapid response speed of 3.5/4 µs. These figures of merit are comparable with or much better than most of the previously reported perovskite detectors. In addition, the PdSe2/perovskite device exhibits obvious sensitivity to polarized light, with a polarization sensitivity of 6.04. Finally, the PdSe2/perovskite detector can readily record five "P," "O," "L," "Y," and "U" images sequentially produced by 808 nm. These results suggest that the present PdSe2/perovskite Schottky junction photodetectors may be useful for assembly of optoelectronic system applications in near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA