Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060268

RESUMO

SUMMARY: The Local Disordered Region Sampling (LDRS, pronounced loaders) tool is a new module developed for IDPConformerGenerator, a previously validated approach to model intrinsically disordered proteins (IDPs). The IDPConformerGenerator LDRS module provides a method for generating all-atom conformations of intrinsically disordered protein regions at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB or mmCIF formatted structural template of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo-Side Chain Entropy, transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, the ability to be used as a library and via command-line, and the computational speed of the IDPConformerGenerator platform. AVAILABILITY AND IMPLEMENTATION: The LDRS module is part of the IDPConformerGenerator modeling suite, which can be downloaded from GitHub at https://github.com/julie-forman-kay-lab/IDPConformerGenerator. IDPConformerGenerator is written in Python3 and works on Linux, Microsoft Windows, and Mac OS versions that support DSSP. Users can utilize LDRS's Python API for scripting the same way they can use any part of IDPConformerGenerator's API, by importing functions from the "idpconfgen.ldrs_helper" library. Otherwise, LDRS can be used as a command line interface application within IDPConformerGenerator. Full documentation is available within the command-line interface as well as on IDPConformerGenerator's official documentation pages (https://idpconformergenerator.readthedocs.io/en/latest/).


Assuntos
Proteínas Intrinsicamente Desordenadas , Software , Biblioteca Gênica , Proteínas de Membrana , Documentação
2.
J Phys Chem B ; 127(34): 7472-7486, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37595014

RESUMO

The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E). Phosphorylation of 4E-BP2 dramatically reduces the level of eIF4E binding, in part by stabilizing a binding-incompatible folded domain. Here, we used a Rosetta-based sampling algorithm optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and 5-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N- and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian approach to obtain NP and 5P conformational ensembles that agree with experimental data from nuclear magnetic resonance, small-angle X-ray scattering, and single-molecule Förster resonance energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed the role of charge segregation and pi interactions in driving contacts between distal regions of the chain (∼70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of each of the two ensembles into four clusters with different global dimensions and contact maps. This helped delineate an NP cluster that, based on our smFRET data, is compatible with the eIF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable insights on intrachain interactions that bias folding and binding of this protein.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Intrinsicamente Desordenadas , Teorema de Bayes , Análise por Conglomerados , Algoritmos
3.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546943

RESUMO

The Local Disordered Region Sampling (LDRS, pronounced loaders) tool, developed for the IDPConformerGenerator platform (Teixeira et al. 2022), provides a method for generating all-atom conformations of intrinsically disordered regions (IDRs) at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB structure of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo Side Chain Entropy (MC-SCE) (Bhowmick and Head-Gordon 2015), transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, ability to be used as a library and via command-line, and computational speed of the IDPConformerGenerator platform.

4.
Biophys J ; 121(16): 3049-3060, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841142

RESUMO

Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Intrinsicamente Desordenadas , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA