RESUMO
In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, PBDBT-DTBT and PTQ-2F, and one small-molecule acceptor, BTP-3-EH-4Cl, into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device involved first depositing a PBDBT-DTBT:PTQ-2F blend under layer and then a BTP-3-EH-4Cl top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ PBDBT-DTBT:PTQ-2F:BTP-3-EH-4Cl device or 16.6% for the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability (T80) at 85 °C of the twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device surpassed that of the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.
RESUMO
This study focuses on the hole transport layer of molybdenum trioxide (MoO3) for inverted bulk heterojunction (BHJ) organic photovoltaics (OPVs), which were fabricated using a combination of a spray coating and low-temperature annealing process as an alternative to the thermal evaporation process. To achieve a good coating quality of the sprayed film, the solvent used for solution-processed MoO3 (S-MoO3) should be well prepared. Isopropanol (IPA) is added to the as-prepared S-MoO3 solution to control its concentration. MoO3 solutions at concentrations of 5 mg/mL and 1 mg/mL were used for the spray coating process. The power conversion efficiency (PCE) depends on the concentration of the MoO3 solution and the spray coating process parameters of the MoO3 film, such as flow flux, spray cycles, and film thickness. The results of devices fabricated from solution-processed MoO3 with various spray fluxes show a lower PCE than that based on thermally evaporated MoO3 (T-MoO3) due to a limiting FF, which gradually increases with decreasing spray cycles. The highest PCE of 2.8% can be achieved with a 1 mg/mL concentration of MoO3 solution at the sprayed flux of 0.2 mL/min sprayed for one cycle. Additionally, S-MoO3 demonstrates excellent stability. Even without any encapsulation, OPVs can retain 90% of their initial PCE after 1300 h in a nitrogen-filled glove box and under ambient air conditions. The stability of OPVs without any encapsulation still has 90% of its initial PCE after 1300 h in a nitrogen-filled glove box and under air conditions. The results represent an evaluation of the feasibility of solution-processed HTL, which could be employed for a large-area mass production method.
RESUMO
The ability of organic photovoltaics (OPVs) to be deposited on flexible substrates by roll-to-roll (R2R) processes is highly attractive for rapid mass production. Many research teams have demonstrated the great potential of flexible OPVs. However, the fabrication of R2R-coated OPVs is quite limited. There is still a performance gap between the R2R flexible OPVs and the rigid OPVs. In this study, we demonstrate the promising photovoltaic characteristics of flexible OPVs fabricated from blends of low bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T) and non-fullerene 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC). We successfully R2R slot-die coated the flexible OPVs with high power conversion efficiency (PCE) of over 8.9% under irradiation of simulated sunlight. Our results indicate that the processing parameters significantly affect the PCE of R2R flexible OPVs. By adjusting the amount of solvent additive and processing temperature, as well as optimizing thermal annealing conditions, the high PCE of R2R slot-die coated OPVs can be obtained. These results provide significant insights into the fundamentals of highly efficient OPVs for the R2R slot-die coating process.
RESUMO
Wood cellulose microfibril (CMF) is the most abundant organic substance on Earth but its nanostructure remains poorly understood. There are controversies regarding the glucan chain number (N) of CMFs during initial synthesis and whether they become fused afterward. Here, we combined small-angle X-ray scattering, solid-state nuclear magnetic resonance and X-ray diffraction analyses to resolve CMF nanostructures in native wood. We developed small-angle X-ray scattering measurement methods for the cross-section aspect ratio and area of the crystalline-ordered CMF core, which has a higher scattering length density than the semidisordered shell zone. The 1:1 aspect ratio suggested that CMFs remain mostly segregated, not fused. The area measurement reflected the chain number in the core zone (Ncore). To measure the ratio of ordered cellulose over total cellulose (Roc) by solid-state nuclear magnetic resonance, we developed a method termed global iterative fitting of T1ρ-edited decay (GIFTED), in addition to the conventional proton spin relaxation editing method. Using the formula N = Ncore/Roc, most wood CMFs were found to contain 24 glucan chains, conserved between gymnosperm and angiosperm trees. The average CMF has a crystalline-ordered core of ~2.2 nm diameter and a semidisordered shell of ~0.5 nm thickness. In naturally and artificially aged wood, we observed only CMF aggregation (contact without crystalline continuity) but not fusion (forming a conjoined crystalline unit). This further argued against the existence of partially fused CMFs in new wood, overturning the recently proposed 18-chain fusion hypothesis. Our findings are important for advancing wood structural knowledge and more efficient use of wood resources in sustainable bio-economies.
Assuntos
Microfibrilas , Madeira , Celulose/química , Espectroscopia de Ressonância Magnética , SementesRESUMO
In this study, we demonstrate inverted PTB7:PC71BM polymer solar cells (PSCs) featuring a solution-processed s-MoO3 hole transport layer (HTL) that can, after thermal aging at 85 °C, retain their initial power conversion efficiency (PCE) for at least 2200 h. The T80 lifetimes of the PSCs incorporating the novel s-MoO3 HTL were up to ten times greater than those currently reported for PTB7- or low-band-gap polymer:PCBM PSCs, the result of the inhibition of burn-in losses and long-term degradation under various heat-equivalent testing conditions. We used X-ray photoelectron spectroscopy (XPS) to study devices containing thermally deposited t-MoO3 and s-MoO3 HTLs and obtain a mechanistic understanding of how the robust HTL is formed and how it prevented the PSCs from undergoing thermal degradation. Heat tests revealed that the mechanisms of thermal inter-diffusion and interaction of various elements within active layer/HTL/Ag electrodes controlled by the s-MoO3 HTL were dramatically different from those controlled by the t-MoO3 HTL. The new prevention mechanism revealed here can provide the conceptual strategy for designing the buffer layer in the future. The PCEs of PSCs featuring s-MoO3 HTLs, measured in damp-heat (65 °C/65% RH; 85 °C per air) and light soaking tests, confirmed their excellent stability. Such solution-processed MoO3 HTLs appear to have great potential as replacements for commonly used t-MoO3 HTLs.
RESUMO
Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.
RESUMO
The in-situ anomalous small-angle X-ray scattering (ASAXS) technique was used to investigate the strain glass transition (SGT) in as-quenched Ti48.7Ni51.3 shape memory alloy during a thermal cycle of 30 °C to the SGT temperature Tg (-50 °C) and then to 30 °C again. The Ni atoms play a critical role as point defects in the SGT mechanism and are very difficult to characterize using conventional tools. ASAXS identified the distribution of Ni atoms in nanodomains, which have a disk-like core-shell configuration with a Ni-rich shell and a highly Ni-rich core. Moreover, the morphological evolution, growth and shrinkage of the highly Ni-rich core domains during the thermal cycle through Tg are demonstrated. The enhancement and reversible behavior of the local lamellar ordering arrangement of nanodomains during the SGT process at Tg are revealed. The structural evolution and local ordering arrangement of nanodomains can play a role in hindering martensitic transformation. The ASAXS results provide new knowledge about the SGT beyond that from current simulation works. However, this corresponding structure of the nanodomains was destroyed when the specimen was heated to 250 °C.
RESUMO
Thermal stability is a bottleneck toward commercialization of polymer solar cells (PSCs). The effect of PCBM aggregation on a multilength scale on the bulk-heterojunction (BHJ) structure, performance, and thermal stability of PSCs is studied here by grazing-incidence small- and wide-angle X-ray scattering. The evolution of hierarchical BHJ structures of a blend film tuned by regioregularity of polymers from the as-cast state to the thermally unstable state is systematically investigated. The thermal stability of PSCs with high polymer regioregularity values can be improved because of the good mutual interaction between polymer crystallites and fullerene aggregates. The insights obtained from this study provide an approach to manipulate the film structure on a multilength scale and to enhance the thermal stability of P3HT-based PSCs.
RESUMO
In this paper we report the effect on the power conversion efficiency (PCE) and stability of photovoltaic devices after incorporating hydrogenated two-dimensional (2D) MoSe2 nanosheets into the active layer of bulk heterojunction (BHJ) organic photovoltaics (OPV). The surface properties of 2D MoSe2 nanosheets largely affect their dispersion in the active layer blend and, thus, influence the carrier mobility, PCE, and stability of corresponding devices. We treated MoSe2 nanosheets with hydrogen plasma and investigated their influence on the polymer packing and fullerene domain size of the active layer. For the optimized devices incorporating 37.5 wt% of untreated MoSe2, we obtained a champion PCE of 9.82%, compared with the champion reference PCE of approximately 9%. After incorporating the hydrogen plasma-treated MoSe2 nanosheets, we achieved a champion PCE of 10.44%-a relative increase of 16% over that of the reference device prepared without MoSe2 nanosheets. This PCE is the one of the highest ever reported for OPVs incorporating 2D materials. We attribute this large enhancement to the enhanced exciton generation and dissociation at the MoSe2-fullerene interface and, consequently, the balanced charge carrier mobility. The device incorporating the MoSe2 nanosheets maintained 70% of its initial PCE after heat-treatment at 100 °C for 1 h; in contrast, the PCE of the reference device decreased to 60% of its initial value-a relative increase in stability of 17% after incorporating these nanosheets. We also incorporated MoSe2 nanosheets (both with and without treatment) into a polymer donor (PBDTTBO)/small molecule (IT-4F) acceptor system. The champion PCEs reached 7.85 and 8.13% for the devices incorporating the MoSe2 nanosheets with and without plasma treatment, respectively-relative increases of 8 and 12%, respectively, over that of the reference. These results should encourage a push toward the implementation of transition metal dichalcogenides to enhance the performances of BHJ OPVs.
RESUMO
Solution-processed organic photovoltaics (OPVs) based on bulk-heterojunctions have gained significant attention to alleviate the increasing demend of fossil fuel in the past two decades. OPVs combined of a wide bandgap polymer donor and a narrow bandgap nonfullerene acceptor show potential to achieve high performance. However, there are still two reasons to limit the OPVs performance. One, although this combination can expand from the ultraviolet to the near-infrared region, the overall external quantum efficiency of the device suffers low values. The other one is the low open-circuit voltage (VOC) of devices resulting from the relatively downshifted lowest unoccupied molecular orbital (LUMO) of the narrow bandgap. Herein, the approach to select and incorporate a versatile third component into the active layer is reported. A third component with a bandgap larger than that of the acceptor, and absorption spectra and LUMO levels lying within that of the donor and acceptor, is demonstrated to be effective to conquer these issues. As a result, the power conversion efficiencies (PCEs) are enhanced by the elevated short-circuit current and VOC; the champion PCEs are 11.1% and 13.1% for PTB7-Th:IEICO-4F based and PBDB-T:Y1 based solar cells, respectively.
RESUMO
Low dark current organic photodetectors (OPDs) with a conventional structure consisting of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as active layer have been fabricated by spray-coating. Tuning the thickness of active layer and thermal annealing process for the spray-coated OPDs results in a remarkable performance with a low dark current density ( Jd) of 2.90 × 10-8 A/cm2 at reverse bias of 1 V. The impact of thermal annealing on the performance of sprayed OPDs is also investigated by the impedance analysis for mechanistic understanding. Our results demonstrate that the optimization of PCBM cluster and interfacial contact between the active layer and the metal electrode tailored by thermal annealing, respectively, could effectively reduce the Jd and increase the sensitivity of sprayed OPDs. The control of PCBM cluster is more important than the interfacial contact between the layers for improving Jd. In addition, structural characterization of the active layer studied by synchrotron small-angle X-ray scattering technique reveals why the spray-coated process can achieve the lowest dark current due to the favorable structure.
RESUMO
In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.
RESUMO
The high power conversion efficiency of bulk heterojunction (BHJ) polymer solar cells can be achieved from either low crystallinity (P3TI) or high crystallinity (P6TI) of isoindigo-based donor-acceptor alternating copolymers blended with PC71BM by controlling nanophase separation using additives. P3TI shows similar device performance regardless of the type of additives, while P6TI is significantly affected by whether the additive is aliphatic or aromatic. To understand the interplays of crystallinity of polymers and the type of additive on the formation of nanomorphology of BHJ, we employed the simultaneous grazing-incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS) technique to perform the quantitative investigation. By incorporating additives, the PC71BM molecules can be easily intercalated into the P3TI polymer-rich domain and the size of the PC71BM clusters is reduced from about 24 nm to about 5 nm by either aliphatic 1,8-diiodooctane (DIO) or aromatic 1-chloronaphthalene (CN). On comparison, it is found to be more difficult for PC71BM molecules to be intercalated into the highly crystalline P6TI dense domain, and the PC71BM molecules have a higher tendency to be self-aggregated, which results in a larger size of PC71BM clusters of about 58 nm. The clusters can be reduced to about 7 nm by DIO and 13 nm by CN. The presence of crystallites in the P6TI domain can interact with the additive to tailor the crystallization of PC71BM clusters to a size similar to that of P6TI crystallites (â¼12 nm) and form a connected network for efficient charge transportation. Thus, the power conversion efficiency of P6TI:PC71BM reaches its maximum of 7.04% using aromatic CN additives. This is a new finding of the effect of crystallinity, which is not observed in the common low crystalline donor-acceptor alternating copolymers such as PTB7. Our results provide a useful guideline to manipulate the desired morphology of BHJ films constructed from alternating copolymer with different crystallinity, which is critical for achieving high power conversion efficiency of solar cells.
RESUMO
The impact of the morphological stability of the donor/acceptor mixture under thermal stress on the photovoltaic properties of bulk heterojunction (BHJ) solar cells based on the poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']-dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]-thiophene)-2-carboxylate-2,6-diyl]/phenyl-C61-butyric acid methyl ester (PTB7-Th/PC61BM) blend is extensively investigated. Both optical microscopy and transmission electron microscopy micrographs show that long-term high-temperature aging stimulates the formation of microscale clusters, the size of which, however, is about 1 order of magnitude smaller than those observed in thermally annealed poly(3-hexylthiophene)/PC61BM composite film. The multilength-scale evolution of the morphology of PTB7-Th/PC61BM film from the scattering profiles of grazing incidence small-angle and wide-angle X-ray scattering indicates the PC61BM molecules spatially confine the self-organization of polymer chains into large domains during cast drying and upon thermal activation. Moreover, some PC61BM molecules accumulate into â¼30-40 nm clusters, the number of which increases with heating time. Therefore, the hole mobility in the active layer decays much more rapidly than the electron mobility, leading to unbalanced charge transport and degraded cell performance. Importantly, the three-component blend that is formed by replacing a small amount of PC61BM in the active layer with the bis-adduct of PC61BM (bis-PC61BM) exhibits robust morphology against thermal stress. Accordingly, the PTB7-Th/PC61BM:bis-PC61BM (8 wt %) device has an extremely stable power conversion efficiency.
RESUMO
Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.
RESUMO
This study demonstrates that the hydrogen storage rate (HSR) of nanoporous carbon supported platinum nanocatalysts (NC) is determined by their heterojunction and geometric configurations. The present NC is synthesized in an average particle size of ~1.5 nm by incipient wetness impregnation of Pt4+ at carbon support followed by annealing in H2 ambient at 102-105 °C. Among the steps in hydrogen storage, decomposition of H2 molecule into 2 H atoms on Pt NC surface is the deciding factor in HSR that is controlled by the thickness of Pt NC. For the best condition, HSR of Pt NC in 1~2 atomic layers thick (4.7 µg/g min) is 2.6 times faster than that (1.3 µg/g min) of Pt NC with higher than 3 atomic layers thick.
RESUMO
Vacuum-sublimed inorganic cesium lead halide perovskite thin films are prepared and integrated in all-vacuum-deposited solar cells. Special care is taken to determine the stoichiometric balance of the sublimation precursors, which has great influence on the device performance. The mixed halide devices exhibit exceptional stabilized power conversion efficiency (11.8%) and promising thermal and long-term stabilities.
RESUMO
Engineering the interface between the active layer and the electrodes has proven to be a promising strategy to enhance the power conversion efficiency (PCE) of hybrid perovskite solar cells (PeSCs). Here, we present an effective approach to achieve highly efficient PeSCs by inserting an easy-accessible hexamethonium bromide (HMB)-doped [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) film between the active perovskite layer and the Ag cathode. This doped interfacial layer delivers several remarkable features for use in PeSCs, including solution processability, good electrical conductivity, fine work-function tunability of the Ag electrode, and general applicability to different fullerene materials. As a consequence, planar-heterojunction PeSCs deliver a PCE up to â¼18%, showing an approximately 5.6-fold enhancement compared with the control device using an undoped PC61BM layer. In particular, benefitting from the high conductivity of this doped film, a prominent PCE as high as 15.58% can be achieved even when a large thickness of the PC61BM layer (120 nm) is used. To the best of our knowledge, this is the highest performance ever reported for PeSCs with a PC61BM thickness more than 100 nm. More encouragingly, large-area PeSCs (active area = 1.2 cm2) via the doctor-blade coating technique also exhibit a remarkable PCE (15.23%) and good long-term stability under an inert atmosphere. Our results indicate that the HMB-doped PC61BM film is a promising interfacial layer for PeSCs and can be compatible with high throughput roll-to-roll manufacturing processes.
RESUMO
Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl2 and CH3NH3I in N,N-dimethylformamide, to a crystalline CH3NH3PbI3-xClx film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.