Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2317283121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227666

RESUMO

Despite many clinical trials, CAR-T cells are not yet approved for human solid tumor therapy. One popular target is mesothelin (MSLN) which is highly expressed on the surface of about 30% of cancers including mesothelioma and cancers of the ovary, pancreas, and lung. MSLN is shed by proteases that cleave near the C terminus, leaving a short peptide attached to the cell. Most anti-MSLN antibodies bind to shed MSLN, which can prevent their binding to target cells. To overcome this limitation, we developed an antibody (15B6) that binds next to the membrane at the protease-sensitive region, does not bind to shed MSLN, and makes CAR-T cells that have much higher anti-tumor activity than a CAR-T that binds to shed MSLN. We have now humanized the Fv (h15B6), so the CAR-T can be used to treat patients and show that h15B6 CAR-T produces complete regressions in a hard-to-treat pancreatic cancer patient derived xenograft model, whereas CAR-T targeting a shed epitope (SS1) have no anti-tumor activity. In these pancreatic cancers, the h15B6 CAR-T replicates and replaces the cancer cells, whereas there are no CAR-T cells in the tumors receiving SS1 CAR-T. To determine the mechanism accounting for high activity, we used an OVCAR-8 intraperitoneal model to show that poorly active SS1-CAR-T cells are bound to shed MSLN, whereas highly active h15B6 CAR-T do not contain bound MSLN enabling them to bind to and kill cancer cells.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Feminino , Humanos , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Mesotelina , Neoplasias Pancreáticas/tratamento farmacológico , Linfócitos T/metabolismo
2.
s.l; s.n; May, 2007. 17 p. ilus.
Não convencional em Inglês | Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1241879

RESUMO

The study of the expression patterns of many genes, or even the entire genome, is now routinely possible. Such powerful tools have enabled hypothesis-generating research at a scale never before possible. Moreover, spatially or temporally linked gene and protein expression, implying co-regulation and functional relatedness, has led to the identification of particular clusters of genes important for fundamental biologic processes, such as development and cancer. Not only is this expected to yield further mechanistic insights into disease processes, but perhaps most exciting, it will likely establish the foundation of predictive medicine, in which understanding of individual genomic signatures leads to the use of appropriately targeted therapy. LEARNING OBJECTIVE: At the conclusion of this learning activity, participants should be able to understand the fundamental tenets of molecular biology as they relate to the field of genomics.


Assuntos
Humanos , DNA , Genoma , Pele/citologia , Pele/embriologia , Pele/química , Dermatopatias/genética , Linfoma/fisiopatologia , Linfoma/genética , Melanoma/fisiopatologia , Melanoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA