Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 633, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978106

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal malignancies and the lack of treatment options makes it more deadly. Chimeric Antigen Receptor T-cell (CAR-T) immunotherapy has revolutionized cancer treatment and made great breakthroughs in treating hematological malignancies, however its success in treating solid cancers remains limited mainly due to the lack of tumor-specific antigens. On the other hand, the prolonged traditional manufacturing process poses challenges, taking 2 to 6 weeks and impacting patient outcomes. CD276 has recently emerged as a potential therapeutic target for anti-solid cancer therapy. Here, we investigated the efficacy of CD276 CAR-T and rapidly-manufactured CAR-T against pancreatic cancer. METHODS: In the present study, CD276 CAR-T was prepared by CAR structure carrying 376.96 scFv sequence, CD8 hinge and transmembrane domain, 4-1BB and CD3ζ intracellular domains. Additionally, CD276 rapidly-manufactured CAR-T (named CD276 Dash CAR-T) was innovatively developed by shortening the duration of ex vitro culture to reduce CAR-T manufacturing time. We evaluated the anti-tumor efficacy of CD276 CAR-T and further compared the functional assessment of Dash CAR-T and conventional CAR-T in vitro and in vivo by detecting the immunophenotypes, killing ability, expansion capacity and tumor-eradicating effect of CAR-T. RESULTS: We found that CD276 was strongly expressed in multiple solid cancer cell lines and that CD276 CAR-T could efficiently kill these solid cancer cells. Moreover, Dash CAR-T was successfully manufactured within 48-72 h and the functional validation was carried out subsequently. In vitro, CD276 Dash CAR-T possessed a less-differentiated phenotype and robust proliferative ability compared to conventional CAR-T. In vivo xenograft mouse model, CD276 Dash CAR-T showed enhanced anti-pancreatic cancer efficacy and T cell expansion. Besides, except for the high-dose group, the body weight of mice was maintained stable, and the state of mice was normal. CONCLUSIONS: In this study, we proved CD276 CAR-T exhibited powerful activity against pancreatic cancer cells in vitro and in vivo. More importantly, we demonstrated the manufacturing feasibility, acceptable safety and superior anti-tumor efficacy of CD276 Dash CAR-T generated with reduced time. The results of the above studies indicated that CD276 Dash CAR-T immunotherapy might be a novel and promising strategy for pancreatic cancer treatment.


Assuntos
Antígenos B7 , Imunoterapia Adotiva , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Humanos , Animais , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Antígenos B7/metabolismo , Antígenos B7/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Proliferação de Células , Linfócitos T/imunologia
2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894926

RESUMO

This study aimed to investigate the prevalence of color vision deficiencies (CVDs) and determine whether carriers could be detected by analyzing the visual pigment genes. Materials and Methods: The data of students who underwent routine CVD screening using the Ishihara color test in Kaohsiung, Southern Taiwan were analyzed. Furthermore, the DNA samples of 80 randomly selected females and four obligate carriers were analyzed. The most upstream genes, downstream genes, and the most downstream genes in the red/green pigment gene arrays were amplified separately using polymerase chain reaction (PCR), and exon 5 of each gene was analyzed. The prevalence of congenital red-green CVD in this study was 3.46% in males and 0.14% in females. The PCR analysis of the first gene, downstream gene, and last gene revealed normal patterns in 73 normal cases. Seven unusual patterns were detected in two proton carriers and five deutan carriers. Among the randomly selected females, 8.8% (7/80) were CVD carriers. The prevalence of CVD among male Taiwanese students in this study was 3.46%. Female carriers of congenital CVD can be identified by molecular analysis of the visual pigment genes. The proportion of CVD carriers among the randomly selected females was 8.8%, which was slightly higher than expected and further studies are warranted.


Assuntos
Doenças Cardiovasculares , Defeitos da Visão Cromática , Humanos , Masculino , Feminino , Defeitos da Visão Cromática/epidemiologia , Defeitos da Visão Cromática/genética , Percepção de Cores/genética , Pigmentos da Retina/genética , Prevalência , Taiwan/epidemiologia
3.
J Transl Med ; 20(1): 608, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536403

RESUMO

BACKGROUND: Chimeric antigen receptor T (CAR-T) cells are genetically modified T cells with redirected specificity and potent T-cell-mediated cytotoxicity toward malignant cells. Despite several CAR-T products being approved and commercialized in the USA, Europe, and China, CAR-T products still require additional optimization to ensure reproducible and cost-effective manufacture. Here, we investigated the critical parameters in the CD3+ T-cell isolation process that significantly impacted CAR-T manufacturing's success. METHODS: CAR-T cells were prepared from cryopreserved peripheral blood mononuclear cells (PBMC). The thawed PBMC was rested overnight before the CD3+ T cell isolation process using CTS™ Dynabeads™ CD3/CD28. Different isolation media, cell-bead co-incubation time, and cell density were examined in this study. Activated CD3+ T cells were transduced with a gamma retroviral vector carrying the CD19 or BCMA CAR sequence. The CAR-T cells proliferated in a culture medium supplemented with interleukin 2 (IL-2). RESULTS: CD14+ monocytes hindered T-cell isolation when X-VIVO 15 basic medium was used as the selection buffer. The activation of T cells was blocked because monocytes actively engulfed CD3/28 beads. In contrast, when DPBS was the selection medium, the T-cell isolation and activation were no longer blocked, even in patients whose PBMC contained abnormally high CD14+ monocytes and a low level of CD3+ T cells. CONCLUSIONS: In this study, we discovered that selecting CD3+ T-cell isolation media is critical for improving T-cell activation, transduction, and CAR-T proliferation. Using DPBS as a CD3+ T cell isolation buffer significantly improved the success rate and shortened the duration of CAR-T production. The optimized process has been successfully applied in our ongoing clinical trials. Trial registration NCT03798509: Human CD19 Targeted T Cells Injection Therapy for Relapsed and Refractory CD19-positive Leukemia. Date of registration: January 10, 2019. NCT03720457: Human CD19 Targeted T Cells Injection (CD19 CAR-T) Therapy for Relapsed and Refractory CD19-positive Lymphoma. Date of registration: October 25, 2018. NCT04003168: Human BCMA Targeted T Cells Injection Therapy for BCMA-positive Relapsed/Refractory Multiple Myeloma. Date of registration: July 1, 2019.


Assuntos
Linfoma , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD19 , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva/métodos , Leucócitos Mononucleares , Monócitos , Receptores de Antígenos de Linfócitos T , Linfócitos T
4.
Transl Oncol ; 14(2): 100971, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321428

RESUMO

A novel disialoganglioside 2 (GD2)-specific chimeric antigen receptor (CAR)-modified T cell therapy against retinoblastoma (RB) were generated. GD2-CAR consists of a single-chain variable fragment (scFv) derived from a monoclonal antibody, hu3F8, that is linked with the cytoplasmic signaling domains of CD28, 41BB, a CD3ζ, and an inducible caspase 9 death fusion partner. GD2 antigen is highly expressed in Y79RB cell line and in several surgical RB tumor specimens. In vitro co-culture experiments revealed the effective killing of Y79RB cells by GD2-CAR T cells, but not by control CD19-CAR T cells. The killing activities of GD2-CAR T cells were diminished when repeatedly exposed to the tumor, due to an attenuated expression of GD2 antigen on tumor cells and upregulation of inhibitory molecules of the PD1 and PD-L1 axis in the CAR T cells and RB tumor cells respectively. This is the first report to describe the potential of GD2-CAR T cells as a promising therapeutic strategy for RB with the indication of potential benefit of combination therapy with immune checkpoint inhibitors.

5.
Curr Gene Ther ; 19(1): 40-53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30444200

RESUMO

INTRODUCTION: Recent studies on CD19-specific chimeric antigen receptor (CAR)-modified T cells (CARTs) have demonstrated unprecedented successes in treating refractory and relapsed B cell malignancies. The key to the latest CART therapy advances can be attributed to the improved costimulatory signals in the CAR design. METHODS: Here, we established several novel CARs by incorporating T cell signaling domains of CD28 in conjunction with intracellular signaling motif of 4-1BB, CD27, OX40, ICOS, and IL-15Rα. These novel CARs were functionally assessed based on a simple target cell killing assay. RESULTS: The results showed that the CD28/IL-15Rα co-signaling (153z) CAR demonstrated the fastest T cell expansion potential and cytotoxic activities. IL-15 is a key cytokine that mediates immune effector activities. The 153z CARTs maintained prolonged killing activities after repetitive rounds of target cell engagement. Consistent with the enhanced target killing function, the 153z CARTs produced increased amount of effector cytokines including IFN-γ, TNFα and IL-2 upon interaction with the target cells. CONCLUSION: In a follow-up clinical study, an acute lymphoblastic leukemia (ALL) patient, who experienced multiple relapses of central nervous system leukemia (CNSL) and failed all conventional therapies, was enrolled to receive the CD19-specific 153z CART treatment. The patient achieved complete remission after the 153z CART cell infusion. The translational outcome supports further investigation into the safety and enhanced therapeutic efficacy of the IL-15Rα-modified CART cells in cancer patients.


Assuntos
Imunoterapia/métodos , Subunidade alfa de Receptor de Interleucina-15/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/transplante , Receptor Toll-Like 9/imunologia , Adulto , Estudos de Casos e Controles , Células Cultivadas , Citocinas/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-15/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Receptor Toll-Like 9/genética
7.
J Leukoc Biol ; 93(2): 289-99, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159926

RESUMO

Recent studies have demonstrated the stimulatory effects of HMG-CoA reductase inhibitors, statins, on IL-1ß secretion in monocytes and suggest a crucial role for isoprenoids in the inhibition of caspase-1 activity. In this study, we further elucidated the molecular mechanisms underlying the stimulatory effects of statins on caspase-1. Three commonly recognized mechanistic models for NLRP3 inflammasome activation (i.e., ATP/P2X7/K(+) efflux, ROS production, and lysosomal rupture) were investigated in statin-stimulated human THP-1 monocytes. We found that fluvastatin and lovastatin can synergize with LPS to trigger inflammasome activation. Moreover, statin-induced caspase-1 activation and IL-1ß production in LPS-primed THP-1 cells are dependent on GGPP deficiency and P2X7 activation. In particular, increased ATP release accounts for the action of statins in P2X7 activation. We also provide evidence that statin-induced moderate ROS elevation is involved in this event. Moreover, the cathepsin B inhibitor was shown to reduce statin-induced IL-1ß secretion. Consistently statins can induce cathepsin B activation and lysosomal rupture, as evidenced by LysoTracker staining. Statins also increase intracellular ATP secretion and IL-1ß release in primary human monocytes and murine macrophages. Notably, exogenous ATP-elicited P2X7 activation and consequent IL-1ß release, an index of direct NLRP3 inflammasome activation, were not altered by statins. Taken together, statin-induced enhancement of inflammasome activation in monocytes and macrophages covers multiple mechanisms, including increases in ATP release, ROS production, and lysosomal rupture. These data not only shed new insight into isoprenylation-dependent regulation of caspase-1 but also unmask mechanisms for statin-elicited inflammasome activation.


Assuntos
Caspase 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inflamassomos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Interleucina-1beta/biossíntese , Camundongos , Monócitos/enzimologia , Monócitos/imunologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA