Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6814, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884489

RESUMO

Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.


Assuntos
Proteoglicanas , Proteoglicanos Pequenos Ricos em Leucina , Animais , Humanos , Proteoglicanas de Sulfatos de Condroitina , Peixe-Zebra , Decorina , Axônios , Regeneração Nervosa , Proteínas da Matriz Extracelular , Sistema Nervoso Central , Mamíferos
2.
Open Res Eur ; 3: 55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38689633

RESUMO

Soft skills are the elementary management, personal, and interpersonal abilities that are vital for an individual to be efficient at workplace or in their personal life. Each work place requires different set of soft skills. Thus, in addition to scientific/technical skills that are easier to access within a short time frame, several key soft skills are essential for the success of a researcher in today's international work environment. In this paper, the trainees and trainers of the EU-CardioRNA COST Action CA17129 training school on soft skills present basic and advanced soft skills for early career researchers. Here, we particularly emphasize on the importance of transferable and presentation skills, ethics, literature reading and reviewing, research protocol and grant writing, networking, and career opportunities for researchers. All these skills are vital but are often overlooked by some scholars. We also provide tips to ace in aforementioned skills that are crucial in a day-to-day life of early and late career researchers in academia and industry.

3.
Cells ; 10(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204045

RESUMO

The capacity for long-distance axon regeneration and functional recovery after spinal cord injury is poor in mammals but remarkable in some vertebrates, including fish and salamanders. The cellular and molecular basis of this interspecies difference is beginning to emerge. This includes the identification of target cells that react to the injury and the cues directing their pro-regenerative responses. Among existing models of successful spinal cord regeneration, the zebrafish is arguably the most understood at a mechanistic level to date. Here, we review the spinal cord injury paradigms used in zebrafish, and summarize the breadth of neuron-intrinsic and -extrinsic factors that have been identified to play pivotal roles in the ability of zebrafish to regenerate central nervous system axons and recover function.


Assuntos
Axônios/fisiologia , Regeneração , Traumatismos da Medula Espinal/metabolismo , Peixe-Zebra/metabolismo , Animais , Axônios/patologia , Modelos Animais de Doenças , Humanos , Medula Espinal , Traumatismos da Medula Espinal/patologia
4.
Dev Cell ; 56(4): 509-524.e9, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33412105

RESUMO

In mammals, perivascular cell-derived scarring after spinal cord injury impedes axonal regrowth. In contrast, the extracellular matrix (ECM) in the spinal lesion site of zebrafish is permissive and required for axon regeneration. However, the cellular mechanisms underlying this interspecies difference have not been investigated. Here, we show that an injury to the zebrafish spinal cord triggers recruitment of pdgfrb+ myoseptal and perivascular cells in a PDGFR signaling-dependent manner. Interference with pdgfrb+ cell recruitment or depletion of pdgfrb+ cells inhibits axonal regrowth and recovery of locomotor function. Transcriptional profiling and functional experiments reveal that pdgfrb+ cells upregulate expression of axon growth-promoting ECM genes (cthrc1a and col12a1a/b) and concomitantly reduce synthesis of matrix molecules that are detrimental to regeneration (lum and mfap2). Our data demonstrate that a switch in ECM composition is critical for axon regeneration after spinal cord injury and identify the cellular source and components of the growth-promoting lesion ECM.


Assuntos
Axônios/metabolismo , Cicatriz/patologia , Matriz Extracelular/metabolismo , Regeneração Nervosa , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Medula Espinal/patologia , Peixe-Zebra/fisiologia , Animais , Cicatriz/fisiopatologia , Modelos Biológicos , Recuperação de Função Fisiológica , Transdução de Sinais , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Proteínas de Peixe-Zebra/metabolismo
5.
Development ; 147(24)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33158923

RESUMO

Spinal cord injury (SCI) results in loss of neurons, oligodendrocytes and myelin sheaths, all of which are not efficiently restored. The scarcity of oligodendrocytes in the lesion site impairs re-myelination of spared fibres, which leaves axons denuded, impedes signal transduction and contributes to permanent functional deficits. In contrast to mammals, zebrafish can functionally regenerate the spinal cord. Yet, little is known about oligodendroglial lineage biology and re-myelination capacity after SCI in a regeneration-permissive context. Here, we report that, in adult zebrafish, SCI results in axonal, oligodendrocyte and myelin sheath loss. We find that OPCs, the oligodendrocyte progenitor cells, survive the injury, enter a reactive state, proliferate and differentiate into oligodendrocytes. Concomitantly, the oligodendrocyte population is re-established to pre-injury levels within 2 weeks. Transcriptional profiling revealed that reactive OPCs upregulate the expression of several myelination-related genes. Interestingly, global reduction of axonal tracts and partial re-myelination, relative to pre-injury levels, persist at later stages of regeneration, yet are sufficient for functional recovery. Taken together, these findings imply that, in the zebrafish spinal cord, OPCs replace lost oligodendrocytes and, thus, re-establish myelination during regeneration.


Assuntos
Células Precursoras de Oligodendrócitos/citologia , Remielinização/genética , Traumatismos da Medula Espinal/genética , Medula Espinal/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Humanos , Células Precursoras de Oligodendrócitos/transplante , Oligodendroglia/transplante , Regeneração/genética , Medula Espinal/transplante , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
6.
J Cardiovasc Dev Dis ; 7(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019569

RESUMO

The interactions of form and function have been the focus of numerous studies in the context of development and more recently regeneration. Our understanding on how cells, tissues and organs sense and interpret external cues, such as mechanical forces, is becoming deeper as novel techniques in imaging are applied and the relevant signaling pathways emerge. These cellular responses can be found from bacteria to all multicellular organisms such as plants and animals. In this review, we focus on hemodynamic flow and endothelial shear stress during cardiovascular development and regeneration, where the interactions of morphogenesis and proper function are more prominent. In addition, we address the recent literature on the role of extracellular matrix and fibrotic response during tissue repair and regeneration. Finally, we refer to examples where the integration of multi-disciplinary approaches to understand the biomechanics of cellular responses could be utilized in novel medical applications.

7.
Front Cell Neurosci ; 13: 102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031593

RESUMO

Low remyelination efficiency after spinal cord injury (SCI) is a major restraint to successful axonal and functional regeneration in mammals. In contrast, adult zebrafish can: (i) regenerate oligodendrocytes and myelin sheaths within 2 weeks post lesion; (ii) re-grow axonal projections across the lesion site and (iii) recover locomotor function within 6 weeks after spinal cord transection. However, little is known about the intrinsic properties of oligodendrocyte progenitor cells (OPCs), the remyelinating cells of the central nervous system (CNS). Here, we demonstrate that purified OPCs from the adult zebrafish spinal cord are electrically active. They functionally express voltage-gated K+ and Na+ channels, glutamate receptors and exhibit depolarizing, tetrodotoxin (TTX)-sensitive spikes, as previously seen in rodent and human OPCs. Furthermore, we show that the percentage of zebrafish OPCs exhibiting depolarizing spikes and Nav-mediated currents is lower as compared to rodent white matter OPCs, where these membrane characteristics have been shown to underlie OPC injury susceptibility. These findings imply that adult zebrafish OPCs resemble electrical properties found in mammals and represent a relevant cell type towards understanding the biology of the primary cells targeted in remyelination therapies for non-regenerative species. The in vitro platform introduced in this study could be used in the future to: (i) elucidate how membrane characteristics of zebrafish OPCs change upon injury and (ii) identify potential signaling components underlying OPC injury recognition.

8.
Sci Rep ; 8(1): 11335, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054579

RESUMO

Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced ß-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Dieta Hiperlipídica , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Metformina/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Estreptozocina/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas Repressoras
9.
Front Cell Neurosci ; 11: 284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959189

RESUMO

Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC)-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable analysis up to 10 days in vitro. Finally, we demonstrate that zebrafish OPCs differentiate into Myelin Basic Protein (MBP)-expressing OLs when co-cultured with human motor neurons differentiated from induced pluripotent stem cells (iPSCs). This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatments to human diseases.

10.
Nat Protoc ; 9(12): 2809-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25393778

RESUMO

Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.


Assuntos
Células Acinares/citologia , Técnicas Citológicas/métodos , Técnicas In Vitro , Ilhotas Pancreáticas/citologia , Pâncreas/citologia , Animais , Sinalização do Cálcio , Humanos , Camundongos , Microtomia/instrumentação , Microtomia/métodos , Ratos , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA