Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Front Immunol ; 15: 1332588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524121

RESUMO

Naïve CD8+ T cells need to undergo a complex and coordinated differentiation program to gain the capacity to control virus infections. This not only involves the acquisition of effector functions, but also regulates the development of a subset of effector CD8+ T cells into long-lived and protective memory cells. Microbiota-derived metabolites have recently gained interest for their influence on T cells, but much remains unclear about their role in CD8+ T cell differentiation. In this study, we investigated the role of the G protein-coupled receptors (GPR)41 and GPR43 that can bind microbiota-derived short chain fatty acids (SCFAs) in CD8+ T cell priming following epicutaneous herpes simplex virus type 1 (HSV-1) infection. We found that HSV-specific CD8+ T cells in GPR41/43-deficient mice were impaired in the antigen-elicited production of interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), granzyme B and perforin, and failed to differentiate effectively into memory precursors. The defect in controlling HSV-1 at the site of infection could be restored when GPR41 and GPR43 were expressed exclusively by HSV-specific CD8+ T cells. Our findings therefore highlight roles for GPR41 and GPR43 in CD8+ T cell differentiation, emphasising the importance of metabolite sensing in fine-tuning anti-viral CD8+ T cell priming.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Herpes Simples/metabolismo , Ácidos Graxos Voláteis/metabolismo , Interferon gama/metabolismo
2.
J Infect Dis ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366567

RESUMO

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, analysis of these in patients is complicated by their treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. We also uncovered a critical, cell intrinsic role of DOCK2 in the priming of anti-viral CD8+ T cells and in particular their initial expansion, despite apparently normal early activation of these cells. When this defect was overcome by priming in vitro, DOCK2-deficient CD8+ T cells were surprisingly protective against HSV-1-disease, albeit not as effectively as wild type cells. These results shed light on a cellular deficiency that is likely to impact anti-viral immunity in DOCK2-deficient patients.

3.
iScience ; 27(2): 108801, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303725

RESUMO

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.

4.
J Virol ; 97(11): e0110723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902400

RESUMO

IMPORTANCE: Immune evasion and latency are key mechanisms that underlie the success of herpesviruses. In each case, interactions between viral and host proteins are required and due to co-evolution, not all mechanisms are preserved across host species, even if infection is possible. This is highlighted by the herpes simplex virus (HSV) protein immediate early-infected cell protein (ICP)47, which inhibits the detection of infected cells by killer T cells and acts with high efficiency in humans, but poorly, if at all in mouse cells. Here, we show that ICP47 retains modest but detectable function in mouse cells, but in an in vivo model we found no role during acute infection or latency. We also explored the activity of the ICP47 promoter, finding that it could be active during latency, but this was dependent on genome location. These results are important to interpret HSV pathogenesis work done in mice.


Assuntos
Herpes Simples , Proteínas Imediatamente Precoces , Simplexvirus , Animais , Camundongos , Herpes Simples/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Evasão da Resposta Imune , Regiões Promotoras Genéticas , Simplexvirus/genética , Simplexvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral
5.
Immunol Cell Biol ; 101(9): 789-792, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37638731

RESUMO

In this article, we discuss the recent observation by Augusto et al. made using a novel mobile phone application-based COVID-19 Citizen Science Study that an HLA genetic variant, HLA-B*15:01, is associated with asymptomatic SARS-CoV-2 infection. To explain this association, Augusto et al. describe a cross-reactive memory CD8+ T-cell response in HLA-B*15:01+ SARS-CoV-2 unexposed individuals that retains high avidity for two structurally conserved epitopes found in SARS-CoV-2 and seasonal coronavirus strains. These observations provide an insight into potential molecular determinants that facilitate rapid, early clearance of virus.

6.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577614

RESUMO

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, patients with these diseases are by definition rare. In addition, any analysis is complicated by treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. Further, we found that they have a critical, cell intrinsic role of DOCK2 in the clonal expansion of anti-viral CD8+ T cells despite normal early activation of these cells. Finally, while the major deficiency is in clonal expansion, the ability of primed and expanded DOCK2-deficient CD8+ T cells to protect against HSV-1-infection is also compromised. These results provide a contributing cause for the frequent and devastating viral infections seen in DOCK2-deficient patients and improve our understanding of anti-viral CD8+ T cell immunity.

7.
Mol Immunol ; 161: 1-10, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478775

RESUMO

The affinity and stability of peptide binding to Major Histocompatibility Complex Class I (MHC-I) molecules are fundamental parameters that underpin the specificity and magnitude of CD8+ T cell responses. These parameters can be estimated in some cases by computational tools, but experimental validation remains valuable, especially for stability. Methods to measure peptide binding can be broadly categorised into either cell-based assays using TAP-deficient cell lines such as RMA/S, or cell-free strategies, such as peptide competition-binding assays and surface plasmon resonance. Cell-based assays are subject to confounding biological activity, including peptide trimming by peptidases and dilution of peptide-loaded MHC-I on the surface of cells through cell division. Current cell-free methods require in-house production and purification of MHC-I. In this study, we present the development of new cell-free assays to estimate the relative affinity and dissociation kinetics of peptide binding to MHC-I. These assays, which we have called BMX-A (relative affinity) and BMX-S (kinetic stability), are reliable, scalable and accessible, in that they use off-the-shelf commercial reagents and standard flow cytometry techniques.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/química , Linfócitos T CD8-Positivos , Linhagem Celular
8.
Cell Mol Immunol ; 20(7): 777-793, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161048

RESUMO

As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection.


Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos B/metabolismo , Antígenos CD57/metabolismo , Diferenciação Celular , Antígeno CTLA-4 , Humanos
9.
J Infect Dis ; 227(3): 391-401, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648018

RESUMO

The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.


Assuntos
Herpesvirus Humano 3 , Antígenos de Histocompatibilidade Classe I , Animais , Herpesvirus Humano 3/genética , Ligantes , Antígenos de Histocompatibilidade Menor , Complexo Principal de Histocompatibilidade , Mamíferos
10.
Adv Sci (Weinh) ; 9(23): e2201415, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657076

RESUMO

The spread of viral and bacterial pathogens mediated by contact with surfaces is a leading cause of infection worldwide. COVID-19 and the continuous rise of deaths associated with antibiotic-resistant bacteria highlight the need to impede surface-mediated transmission. A sprayable coating with an intrinsic ability to resist the uptake of bacteria and viruses from surfaces and droplets, such as those generated by sneezing or coughing, is reported. The coating also provides an effective microbicidal functionality against bacteria, providing a dual barrier against pathogen uptake and transmission. This antimicrobial functionality is fully preserved following scratching and other induced damage to its surface or 9 days of submersion in a highly concentrated suspension of bacteria. The coatings also register an 11-fold decrease in viral contamination compared to the noncoated surfaces.


Assuntos
Anti-Infecciosos , COVID-19 , Vírus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Humanos
11.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406117

RESUMO

Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.


Assuntos
Herpes Simples , Herpesvirus Humano 1/imunologia , Proteínas/fisiologia , Animais , Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/imunologia , Herpes Simples/imunologia , Herpes Simples/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Ribonucleases/imunologia , Proteínas Virais/imunologia
12.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33692206

RESUMO

Vaccinia virus (VACV) was the vaccine used to eradicate smallpox and is being repurposed as a vaccine vector. CD8+ T cells are key anti-viral mediators, but require priming to become effector or memory cells. Priming requires an interaction with dendritic cells that are either infected (direct priming), or that have acquired virus proteins but remain uninfected (cross priming). To investigate CD8+ T cell priming pathways for VACV, we engineered the virus to express CPXV12 and CPXV203, two inhibitors of antigen presentation encoded by cowpox virus. These intracellular proteins would be expected to block direct but not cross priming. The inhibitors had diverse impacts on the size of anti-VACV CD8+ T cell responses across epitopes and by different infection routes in mice, superficially suggesting variable use of direct and cross priming. However, when we then tested a form of antigen that requires direct priming, we found surprisingly that CD8+ T cell responses were not diminished by co-expression with CPXV12 and CPXV203. We then directly quantified the impact of CPXV12 and CPXV203 on viral antigen presentation using mass spectrometry, which revealed strong, but incomplete inhibition of antigen presentation by the CPXV proteins. Therefore, direct priming of CD8+ T cells by poxviruses is robust enough to withstand highly potent viral inhibitors of antigen presentation. This is a reminder of the limits of viral immune evasion and shows that viral inhibitors of antigen presentation cannot be assumed to dissect cleanly direct and cross priming of anti-viral CD8+ T cells.ImportanceCD8+ T cells are key to anti-viral immunity, so it is important to understand how they are activated. Many viruses have proteins that protect infected cells from T cell attack by interfering with the process that allows virus infection to be recognised by CD8+ T cells. It is thought that these proteins would also stop infected cells from activating T cells in the first place. However, we show here that this is not the case for two very powerful inhibitory proteins from cowpox virus. This demonstrates the flexibility and robustness of immune processes that turn on the immune responses required to fight infection.

13.
Bio Protoc ; 11(24): e4270, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087929

RESUMO

The engineering of poxvirus genomes is fundamental to primary and applied virology research. Indeed, recombinant poxviruses form the basis for many novel vaccines and virotherapies but producing and purifying these viruses can be arduous. In recent years, CRISPR/Cas9 has become the favoured approach for genome manipulation due to its speed and high success rate. However, recent data suggests poxvirus genomes are not repaired well following Cas9 cleavage. As a result, CRISPR/Cas9 is inefficient as an editing tool, but very effective as a programmable selection agent. Here, we describe protocols for the generation and enrichment of recombinant vaccinia viruses using targeted Cas9 as a selection tool. This novel use of Cas9 is a simple addition to current homologous recombination-based methods that are widespread in the field, facilitating implementation in laboratories already working with poxviruses. This is also the first method that allows for isolation of new vaccinia viruses in less than a fortnight, without the need to incorporate a marker gene or manipulation of large poxvirus genomes in vitro and reactivation with helper viruses. Whilst this protocol describes applications for laboratory strains of vaccinia virus, it should be readily adaptable to other poxviruses. Graphic abstract: Pipeline for Cas9 selection of recombinant poxviruses.

14.
Immunol Cell Biol ; 99(4): 373-391, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33131099

RESUMO

Viperin is an interferon-inducible protein that is pivotal for eliciting an effective immune response against an array of diverse viral pathogens. Here we describe a mechanism of viperin's broad antiviral activity by demonstrating the protein's ability to synergistically enhance the innate immune dsDNA signaling pathway to limit viral infection. Viperin co-localized with the key signaling molecules of the innate immune dsDNA sensing pathway, STING and TBK1; binding directly to STING and inducing enhanced K63-linked polyubiquitination of TBK1. Subsequent analysis identified viperin's necessity to bind the cytosolic iron-sulfur assembly component 2A, to prolong its enhancement of the type-I interferon response to aberrant dsDNA. Here we show that viperin facilitates the formation of a signaling enhanceosome, to coordinate efficient signal transduction following activation of the dsDNA signaling pathway, which results in an enhanced antiviral state. We also provide evidence for viperin's radical SAM enzymatic activity to self-limit its immunomodulatory functions. These data further define viperin's role as a positive regulator of innate immune signaling, offering a mechanism of viperin's broad antiviral capacity.


Assuntos
Interferon Tipo I , DNA , Ligação Proteica , Proteínas/metabolismo , Transdução de Sinais
15.
Commun Biol ; 3(1): 643, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144673

RESUMO

In standard uses of CRISPR/Cas9 technology, the cutting of genomes and their efficient repair are considered to go hand-in-hand to achieve desired genetic changes. This includes the current approach for engineering genomes of large dsDNA viruses. However, for poxviruses we show that Cas9-guide RNA complexes cut viral genomes soon after their entry into cells, but repair of these breaks is inefficient. As a result, Cas9 targeting makes only modest, if any, improvements to basal rates of homologous recombination between repair constructs and poxvirus genomes. Instead, Cas9 cleavage leads to inhibition of poxvirus DNA replication thereby suppressing virus spread in culture. This unexpected outcome allows Cas9 to be used as a powerful tool for selecting conventionally generated poxvirus recombinants, which are otherwise impossible to separate from a large background of parental virus without the use of marker genes. This application of CRISPR/Cas9 greatly speeds up the generation of poxvirus-based vaccines, making this platform considerably more attractive in the context of personalised cancer vaccines and emerging disease outbreaks.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética , Vaccinia virus/genética , Regulação Viral da Expressão Gênica , Humanos , Replicação Viral
16.
J Immunol ; 205(7): 1731-1742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868409

RESUMO

The presentation of pathogen-derived peptides on MHC class I molecules is essential for the initiation of adaptive CD8+ T cell immunity, which in turn is critical for effective control of many significant human infections. The identification of immunogenic pathogen-derived epitopes and a detailed understanding of how they are recognized by TCRs is essential for the design of effective T cell-based vaccines. In this study, we have characterized the T cell recognition and immune responses in mice to two naturally presented influenza A virus-derived peptides previously identified from virally infected cells via mass spectrometry. These neuraminidase-derived peptides, NA181-190 (SGPDNGAVAV) and NA181-191 (SGPDNGAVAVL), are completely overlapping with the exception of a 1 aa extension at the C terminus of the longer peptide. This minor peptidic difference results in the induction of two completely independent and non-cross-reactive T cell populations that show distinct functional characteristics after influenza A virus infection of B6 mice. We show that the unique TCR reactivity to the overlapping peptides is present in the naive repertoire prior to immune expansion in B6 mice. Moreover, we provide a structural explanation underlying the distinct CD8+ T cell reactivities, which reinforces the concept that peptide length is a key determinant of Ag specificity in CD8+ T cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/genética , Neuraminidase/imunologia , Peptídeos/genética , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
17.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759313

RESUMO

Robust priming of CD8+ T cells by viruses is considered to require infection and de novo expression of viral antigens. A corollary of this is that inactivated viruses are thought of as being inevitably poor vaccines for eliciting these responses. In contrast to this dogma, we found that some antigens present in vaccinia virus (VACV) virions prime strong CD8+ T cell responses when the virus was rendered noninfectious by heat. More surprisingly, in some cases these responses were similar in magnitude to those primed by infectious virus administered at an equivalent dose. Next, we tested whether this was a special property of particular antigens and their epitopes and found that foreign epitopes tagged onto three different VACV virion proteins were able to elicit CD8+ T cell responses irrespective of whether the virus was viable or heat killed. Further, the polyfunctionality and cytotoxic ability of the CD8+ T cells primed by these VACVs was equivalent irrespective of whether they were administered to mice as inactivated or live viruses. Finally, we used these VACVs in prime-boost combinations of inactivated and live virus and found that priming with dead virus before a live booster was the most immunogenic regime. We conclude that VACV virions can be efficient vectors for targeting antigens to dendritic cells for effective priming of CD8+ T cells, even when rendered noninfectious and speculate that this might also be the case for other viruses.IMPORTANCE The design of viral vectored vaccines is often considered to require a trade-off between efficacy and safety. This is especially the case for vaccines that aim to induce killer (CD8+) T cells, where there is a well-established dogma that links infection in vaccinated individuals with effective induction of immunity. However, we found that some proteins of vaccinia virus generate strong CD8+ T cell responses even when the virus preparation was inactivated by heat prior to administration as a vaccine. We took advantage of this finding by engineering a new vaccine vector virus that could be used as an inactivated vaccine. These results suggest that vaccinia virus may be a more versatile vaccine vector than previously appreciated and that in some instances safety can be prioritized by the complete elimination of viral replication without a proportional loss of immunogenicity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Temperatura Alta , Imunização Secundária , Vaccinia virus , Vírion , Inativação de Vírus , Animais , Linhagem Celular , Camundongos , Vaccinia virus/química , Vaccinia virus/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Vírion/química , Vírion/imunologia
18.
PLoS Comput Biol ; 16(5): e1007757, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453790

RESUMO

T cell epitope candidates are commonly identified using computational prediction tools in order to enable applications such as vaccine design, cancer neoantigen identification, development of diagnostics and removal of unwanted immune responses against protein therapeutics. Most T cell epitope prediction tools are based on machine learning algorithms trained on MHC binding or naturally processed MHC ligand elution data. The ability of currently available tools to predict T cell epitopes has not been comprehensively evaluated. In this study, we used a recently published dataset that systematically defined T cell epitopes recognized in vaccinia virus (VACV) infected C57BL/6 mice (expressing H-2Db and H-2Kb), considering both peptides predicted to bind MHC or experimentally eluted from infected cells, making this the most comprehensive dataset of T cell epitopes mapped in a complex pathogen. We evaluated the performance of all currently publicly available computational T cell epitope prediction tools to identify these major epitopes from all peptides encoded in the VACV proteome. We found that all methods were able to improve epitope identification above random, with the best performance achieved by neural network-based predictions trained on both MHC binding and MHC ligand elution data (NetMHCPan-4.0 and MHCFlurry). Impressively, these methods were able to capture more than half of the major epitopes in the top N = 277 predictions within the N = 767,788 predictions made for distinct peptides of relevant lengths that can theoretically be encoded in the VACV proteome. These performance metrics provide guidance for immunologists as to which prediction methods to use, and what success rates are possible for epitope predictions when considering a highly controlled system of administered immunizations to inbred mice. In addition, this benchmark was implemented in an open and easy to reproduce format, providing developers with a framework for future comparisons against new tools.


Assuntos
Alergia e Imunologia/normas , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/química , Algoritmos , Alelos , Animais , Área Sob a Curva , Automação , Epitopos de Linfócito T/química , Sistema Imunitário , Ligantes , Aprendizado de Máquina , Camundongos , Camundongos Endogâmicos C57BL , Redes Neurais de Computação , Peptídeos/química , Ligação Proteica , Proteoma , Curva ROC , Vaccinia virus
19.
Nat Commun ; 11(1): 760, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029733

RESUMO

Inflammasomes are important for host defence against pathogens and homeostasis with commensal microbes. Here, we show non-haemolytic enterotoxin (NHE) from the neglected human foodborne pathogen Bacillus cereus is an activator of the NLRP3 inflammasome and pyroptosis. NHE is a non-redundant toxin to haemolysin BL (HBL) despite having a similar mechanism of action. Via a putative transmembrane region, subunit C of NHE initiates binding to the plasma membrane, leading to the recruitment of subunit B and subunit A, thus forming a tripartite lytic pore that is permissive to efflux of potassium. NHE mediates killing of cells from multiple lineages and hosts, highlighting a versatile functional repertoire in different host species. These data indicate that NHE and HBL operate synergistically to induce inflammation and show that multiple virulence factors from the same pathogen with conserved function and mechanism of action can be exploited for sensing by a single inflammasome.


Assuntos
Bacillus cereus/patogenicidade , Enterotoxinas/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas de Bactérias/toxicidade , Linhagem Celular , Enterotoxinas/química , Feminino , Proteínas Hemolisinas/toxicidade , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piroptose/efeitos dos fármacos , Fatores de Virulência/toxicidade
20.
Methods Mol Biol ; 2060: 169-183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31617178

RESUMO

The CRISPR/Cas9 gene editing system is a robust and versatile technology that has revolutionized our capacity for genome engineering and is applicable in a wide range of organisms, including large dsDNA viruses. Here we provide an efficient methodology that can be used both for marker-based and for marker-free CRISPR/Cas9-mediated editing of the HSV-1 genome. In our method, Cas9, guide RNAs and a homology-directed repair template are provided to cells by cotransection of plasmids, followed by introduction of the HSV genome by infection. This method offers a great deal of flexibility, facilitating editing of the HSV genome that spans the range from individual nucleotide changes to large deletions and insertions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Viral , Herpesvirus Humano 1/genética , Animais , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA