Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21348, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494457

RESUMO

We have developed a rigorous theoretical formalism for Floquet engineering, investigating, and subsequently tailoring most crucial electronic properties of 1T[Formula: see text]-MoS[Formula: see text] by applying an external high-frequency dressing field within the off-resonance regime. It was recently demonstrated that monolayer semiconducting 1T[Formula: see text]-MoS[Formula: see text] exhibits tunable and gapped spin- and valley-polarized tilted Dirac bands. The electron-photon dressed states depend strongly on the polarization of the applied irradiation and reflect a full complexity of the low-energy Hamiltonian for non-irradiated material. We have calculated and analyzed the properties of the electron dressed states corresponding to linear and circular polarization of a dressing field by focusing on their symmetry, anisotropy, tilting, direct and indirect band gaps. Circularly polarized dressing field is known for transition into a new electronic state with broken time-reversal symmetry and a non-zero Chern number, and therefore, the combination of these topologically non-trivial phases and transitions between them could reveal some truly unique and previously unknown phenomena and applications. We have also computed and discussed the density of states for various types of 1T[Formula: see text]-MoS[Formula: see text] materials and its modification in the presence of a dressing field.

2.
J Phys Condens Matter ; 34(31)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580577

RESUMO

We develop a theory for the non-equilibrium screening of a charged impurity in a two-dimensional electron system under a strong time-periodic drive. Our analysis of the time-averaged polarization function and dielectric function reveals that Floquet driving modifies the screened impurity potential in two main regimes. In the weak drive regime, the time-averaged screened potential exhibits unconventional Friedel oscillations with multiple spatial periods contributed by a principal period modulated by higher-order periods, which are due to the emergence of additional Kohn anomalies in the polarization function. In the strong drive regime, the time-averaged impurity potential becomes almost unscreened and does not exhibit Friedel oscillations. This tunable Friedel oscillations is a result of the dynamic gating effect of the time-dependent driving field on the two-dimensional electron system.

3.
Nano Lett ; 20(6): 4588-4593, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32402200

RESUMO

When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared with the case without e-h asymmetry, the SSs now bear not only a band asymmetry, such as that in the bulk, but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap of up to 70%. Our results signify the importance of e-h asymmetry in the band engineering of TIs in the thin-film limit.

4.
Phys Rev Lett ; 122(18): 186602, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144885

RESUMO

We develop a theory of Coulomb drag due to momentum transfer between graphene layers in a strong magnetic field. The theory is intended to apply in systems with disorder that is weak compared to Landau level separation, so that Landau level mixing is weak but strong compared to correlation energies within a single Landau level, so that fractional quantum Hall physics is not relevant. We find that, in contrast to the zero-field limit, the longitudinal magneto-Coulomb drag is finite and, in fact, attains a maximum at the simultaneous charge neutrality point (CNP) of both layers. Our theory also predicts a sizable Hall drag resistivity at densities away from the CNP.

5.
J Phys Condens Matter ; 29(46): 465301, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-28862151

RESUMO

We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

6.
Phys Rev Lett ; 115(21): 217602, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636873

RESUMO

We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

7.
J Phys Condens Matter ; 27(21): 214019, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25965703

RESUMO

We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

8.
Phys Rev Lett ; 113(4): 046602, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105640

RESUMO

We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.

9.
Nat Mater ; 12(3): 233-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23241532

RESUMO

Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

10.
Phys Rev Lett ; 109(23): 236806, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368242

RESUMO

We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation effects are essential, we find (i) that the Casimir force is quantized in units of 3hcα(2)/8π(2)d(4) and (ii) that the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor ν=0 quantum Hall state.

11.
Phys Rev Lett ; 107(25): 256801, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22243099

RESUMO

We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λ(R), and transitions to a strong TI when λ(R)>√[U(2)+t(⊥)(2)], where U and t(⊥) are, respectively, the interlayer potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.

12.
Phys Rev Lett ; 105(5): 057401, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867952

RESUMO

Topological insulators can exhibit strong magneto-electric effects when their time-reversal symmetry is broken. In this Letter we consider the magneto-optical Kerr and Faraday effects of a topological insulator thin film weakly exchange coupled to a ferromagnet. We find that its Faraday rotation has a universal value at low frequencies θF=tan(-1)α, where α is the vacuum fine structure constant, and that it has a giant Kerr rotation θK=π/2. These properties follow from a delicate interplay between thin-film cavity confinement and the surface Hall conductivity of a topological insulator's helical quasiparticles.

13.
Phys Rev Lett ; 101(6): 066401, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18764478

RESUMO

We develop a theory for the renormalization of the phonon energy dispersion in graphene due to the combined effects of both Coulomb and electron-phonon (e-ph) interactions. We obtain the renormalized phonon energy spectrum by an exact analytic derivation of the phonon self-energy, finding three distinct Kohn anomalies (KAs) at the phonon wave vector q=omega/v, 2k_{F}+/-omega/v for LO phonons and one at q=omega/v for TO phonons. The presence of these new KAs in graphene, in contrast to the usual KA q=2k_{F} in ordinary metals, originates from the dynamical screening of e-ph interaction (with a concomitant breakdown of the Born-Oppenheimer approximation) and the peculiar chirality of the graphene e-ph coupling.

14.
Phys Rev Lett ; 99(23): 236802, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18233392

RESUMO

We develop a theory for the electron-phonon interaction effects on the electronic properties of graphene. We analytically calculate the electron self-energy, spectral function, and the band velocity renormalization due to phonon-mediated electron-electron interaction, finding that phonon-mediated electron-electron coupling has a large effect on the graphene band structure renormalization. Our analytic theory successfully captures the essential features of the observed graphene electron spectra in the angle-resolved photoemission experiments, predicting a kink at approximately 200 meV below the Fermi level and a reduction of the band velocity by approximately 10-20% at the experimental doping level.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056302, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16803032

RESUMO

Based on the model proposed by Hilgenfeldt [Nature (London) 398, 401 (1999)], we present here a comprehensive theory of thermal radiation in single-bubble sonoluminescence (SBSL). We first invoke the generalized Kirchhoff's law to obtain the thermal emissivity from the absorption cross section of a multilayered sphere (MLS). A sonoluminescing bubble, whose internal structure is determined from hydrodynamic simulations, is then modeled as a MLS and in turn the thermal radiation is evaluated. Numerical results obtained from simulations for argon bubbles show that our theory successfully captures the major features observed in SBSL experiments.

16.
Phys Rev Lett ; 96(5): 056601, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16486964

RESUMO

In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as sigma(xy)SJ/sigma(xy)SS approximately (h/tau)/epsilonF, with tau being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining sigma(s)/sigma(c) approximately 10(-3)-10(-4), where sigma(s(c)) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA