Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 100: 104137, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37127110

RESUMO

Human lymphoblast cells were treated with the marine algal toxin, brevetoxin-2 (PbTx-2), and its effects on the proteome were assessed by redox proteomics using cysteine reactive tandem mass tags (TMT). Additionally, cells were simultaneously treated with PbTx-2 and the antioxidant and acrolein scavenger sodium 2-mercaptoethylsulfonate (MESNA) to determine if MESNA could prevent the proteomic effects of brevetoxin-2. A massive shift in the redox state of the proteome of brevetoxin-2 treated cells was observed. The main pathway affected was genetic information processing. Significantly oxidized proteins included Trx-1, peroxyredoxins (Prxs), ribosomal proteins, and the eukaryotic initiation factor 2 ß subunit (eIF2ß). Proteins that were overexpressed in brevetoxin-treated cells included four folding chaperones. These effects were diminished in the presence of MESNA indicating that MESNA may act through its antioxidant properties or as a brevetoxin scavenger. These studies provide novel insights into new prophylactics for brevetoxicosis in humans and wildlife.


Assuntos
Dinoflagellida , Proteoma , Animais , Humanos , Proteoma/metabolismo , Acroleína , Mesna/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteômica , Peixes/metabolismo , Oxirredução , Resposta a Proteínas não Dobradas , Dinoflagellida/metabolismo
2.
Nucleic Acids Res ; 51(1): 166-181, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36533524

RESUMO

DNA repair is mediated by DNA synthesis guided by a DNA template. Recent studies have shown that DNA repair can also be accomplished by RNA-guided DNA synthesis. However, it remains unknown how RNA can guide DNA synthesis to repair DNA damage. In this study, we revealed the molecular mechanisms underlying RNA-guided DNA synthesis and base damage repair mediated by human repair DNA polymerases. We showed that pol ß, pol κ, and pol ι predominantly synthesized one nucleotide, and pol η, pol ν, and pol θ synthesized multi-nucleotides during RNA-guided DNA base damage repair. The steady-state kinetics showed that pol η exhibited more efficient RNA-guided DNA synthesis than pol ß. Using molecular dynamics simulation, we further revealed dynamic conformational changes of pol ß and pol η and their structural basis to accommodate the RNA template and misoriented triphosphates of an incoming nucleotide. We demonstrated that RNA-guided base damage repair could be accomplished by the RNA-guided DNA strand-displacement synthesis and nick translation leading to nick ligation in a double-strand DNA region. Our study revealed a novel RNA-guided base damage repair pathway during transcription and DNA replication.


Assuntos
Reparo do DNA , RNA , Humanos , Dano ao DNA , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , RNA/genética , Transcrição Gênica
3.
DNA Repair (Amst) ; 109: 103258, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871863

RESUMO

5',8-cyclo-2-deoxy nucleosides (cdPus) are the smallest tandem purine lesions including 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG). They can inhibit DNA and RNA polymerases causing mutations, DNA strand breaks, and termination of DNA replication and gene transcription. cdPus can be removed by nucleotide excision repair with low efficiency allowing them to accumulate in the genome. Recent studies suggest that cdPus can be induced in damaged nucleotide pools and incorporated into the genome by DNA polymerases. However, it remains unknown if and how DNA polymerases can incorporate cdPus. In this study, we examined the incorporation of cdAs by human DNA repair polymerases, DNA polymerases ß (pol ß), and pol η during base excision repair. We then determined the efficiency of cdA incorporation by the polymerases using steady-state kinetics. We found that pol ß and pol η incorporated cdAs opposite dT and dC with low efficiency, and incorporated cdAs were readily extended and ligated into duplex DNA. Using molecular docking analysis, we found that the 5',8-covalent bond in cdA disrupted its hydrogen bonding with a template base suggesting that the phosphodiester bond between the 3'-terminus nucleotide and the α-phosphate of cdATP were generated in the absence of hydrogen bonding. The enzyme kinetics analysis further suggests that pol ß and pol η increased their substrate binding to facilitate the enzyme catalysis for cdA incorporation. Our study reveals unique mechanisms underlying the accumulation of cdPu lesions in the genome resulting from nucleotide incorporation by repair DNA polymerases.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Desoxiadenosinas/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular
4.
ACS Appl Bio Mater ; 4(2): 1632-1639, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34430802

RESUMO

Oxidative stress can damage organs, tissues, and cells through reactive oxygen species (ROS) by oxidizing DNA, proteins, and lipids, thereby resulting in diseases. However, the underlying molecular mechanisms remain to be elucidated. In this study, employing scanning ion conductance microscopy (SICM), we explored the early responses of human embryonic kidney (HEK293H) cells to oxidative DNA damage induced by potassium chromate (K2CrO4). We found that the short term (1-2 h) exposure to a low concentration (10 µM) of K2CrO4 damaged the lipid membrane of HEK293H cells, resulting in structural defects and depolarization of the cell membrane and reducing cellular secretion activity shortly after the treatment. We further demonstrated that the K2CrO4 treatment decreased the expression of the cytoskeleton protein, ß-actin, by inducing oxidative DNA damage in the exon 4 of the ß-actin gene. These results suggest that K2CrO4 caused oxidative DNA damage in cytoskeleton genes such as ß-actin and reduced their expression, thereby disrupting the organization of the cytoskeleton beneath the cell membrane and inducing cell membrane damages. Our study provides direct evidence that oxidative DNA damage disrupted human cell membrane integrity by deregulating cytoskeleton gene expression.


Assuntos
Microscopia/métodos , Estresse Oxidativo/imunologia , Humanos
5.
Front Mol Biosci ; 8: 645823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898522

RESUMO

N6-methyladenosine (m6A) modification in mRNAs and non-coding RNAs is a newly identified epitranscriptomic mark. It provides a fine-tuning of gene expression to serve as a cellular response to endogenous and exogenous stimuli. m6A is involved in regulating genes in multiple cellular pathways and functions, including circadian rhythm, cell renewal, differentiation, neurogenesis, immunity, among others. Disruption of m6A regulation is associated with cancer, obesity, and immune diseases. Recent studies have shown that m6A can be induced by oxidative stress and DNA damage to regulate DNA repair. Also, deficiency of the m6A eraser, fat mass obesity-associated protein (FTO) can increase cellular sensitivity to genotoxicants. These findings shed light on the novel roles of m6A in modulating DNA repair and genome integrity and stability through responding to DNA damage. In this mini-review, we discuss recent progress in the understanding of a unique role of m6As in mRNAs, lncRNAs, and microRNAs in DNA damage response and regulation of DNA repair and genome integrity and instability.

6.
Cells ; 9(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963223

RESUMO

DNA damage and base excision repair (BER) are actively involved in the modulation of DNA methylation and demethylation. However, the underlying molecular mechanisms remain unclear. In this study, we seek to understand the mechanisms by exploring the effects of oxidative DNA damage on the DNA methylation pattern of the tumor suppressor breast cancer 1 (BRCA1) gene in the human embryonic kidney (HEK) HEK293H cells. We found that oxidative DNA damage simultaneously induced DNA demethylation and generation of new methylation sites at the CpGs located at the promoter and transcribed regions of the gene ranging from -189 to +27 in human cells. We demonstrated that DNA damage-induced demethylation was mediated by nucleotide misincorporation by DNA polymerase ß (pol ß). Surprisingly, we found that the generation of new DNA methylation sites was mediated by coordination between pol ß and the de novo DNA methyltransferase, DNA methyltransferase 3b (DNMT3b), through the interaction between the two enzymes in the promoter and encoding regions of the BRCA1 gene. Our study provides the first evidence that oxidative DNA damage can cause dynamic changes in DNA methylation in the BRCA1 gene through the crosstalk between BER and de novo DNA methylation.


Assuntos
Proteína BRCA1/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dano ao DNA , Metilação de DNA/genética , DNA Polimerase beta/metabolismo , Estresse Oxidativo , Sequência de Bases , Guanina/análogos & derivados , Guanina/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica , DNA Metiltransferase 3B
7.
Molecules ; 24(21)2019 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-31717862

RESUMO

Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.


Assuntos
Dano ao DNA/genética , Epigenoma/genética , DNA/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Epigênese Genética/genética , Histonas/metabolismo , Humanos
8.
Cells ; 8(6)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141888

RESUMO

Purine 5',8-cyclo-2'-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5'R and 5'S, for each 2'-deoxyadenosine and 2'-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2'-deoxyribose units generating C5' radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.


Assuntos
Dano ao DNA , Purinas/química , Purinas/metabolismo , Animais , Reparo do DNA , Humanos , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA