Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668195

RESUMO

In this study, the photoelectric properties of a complete series of GaS1-xSex (0 ≤ x ≤ 1) layered crystals are investigated. The photoconductivity spectra indicate a decreasing bandgap of GaS1-xSex as the Se composition x increases. Time-resolved photocurrent measurements reveal a significant improvement in the response of GaS1-xSex to light with increasing x. Frequency-dependent photocurrent measurements demonstrate that both pure GaS crystals and GaS1-xSex ternary alloy crystals exhibit a rapid decrease in photocurrents with increasing illumination frequency. Crystals with lower x exhibit a faster decrease in photocurrent. However, pure GaSe crystal maintains its photocurrent significantly even at high frequencies. Measurements for laser-power-dependent photoresponsivity and bias-voltage-dependent photoresponsivity also indicate an increase in the photoresponsivity of GaS1-xSex as x increases. Overall, the photoresponsive performance of GaS1-xSex is enhanced with increasing x, and pure GaSe exhibits the best performance. This result contradicts the findings of previous reports. Additionally, the inverse trends between bandgap and photoresponsivity with increasing x suggest that GaS1-xSex-based photodetectors could potentially offer a high response and wavelength-selectivity for UV and visible light detection. Thus, this work provides novel insights into the photoelectric characteristics of GaS1-xSex layered crystals and highlights their potential for optoelectronic applications.

2.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38064741

RESUMO

Gallium oxide (Ga2O3) is a promising wide bandgap semiconductor that is viewed as a contender for the next generation of high-power electronics due to its high theoretical breakdown electric field and large Baliga's figure of merit. Here, we report a facile route of synthesizingß-Ga2O3via direct oxidation conversion using solution-processed two-dimensional (2D) GaS semiconducting nanomaterial. Higher order of crystallinity in x-ray diffraction patterns and full surface coverage formation in scanning electron microscopy images after annealing were achieved. A direct and wide bandgap of 5 eV was calculated, and the synthesizedß-Ga2O3was fabricated as thin film transistors (TFT). Theß-Ga2O3TFT fabricated exhibits remarkable electron mobility (1.28 cm2Vs-1) and a good current ratio (Ion/Ioff) of 2.06 × 105. To further boost the electrical performance and solve the structural imperfections resulting from the exfoliation process of the 2D nanoflakes, we also introduced and doped graphene inß-Ga2O3TFT devices, increasing the electrical device mobility by ∼8-fold and thereby promoting percolation pathways for the charge transport. We found that electron mobility and conductivity increase directly with the graphene doping concentration. From these results, it can be proved that theß-Ga2O3networks have excellent carrier transport properties. The facile and convenient synthesis method successfully developed in this paper makes an outstanding contribution to applying 2D oxide materials in different and emerging optoelectronic applications.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35564152

RESUMO

Tin disulfide (SnS2) is a promising semiconductor for use in nanoelectronics and optoelectronics. Doping plays an essential role in SnS2 applications, because it can increase the functionality of SnS2 by tuning its original properties. In this study, the effect of zinc (Zn) doping on the photoelectric characteristics of SnS2 crystals was explored. The chemical vapor transport method was adopted to grow pristine and Zn-doped SnS2 crystals. Scanning electron microscopy images indicated that the grown SnS2 crystals were layered materials. The ratio of the normalized photocurrent of the Zn-doped specimen to that of the pristine specimen increased with an increasing illumination frequency, reaching approximately five at 104 Hz. Time-resolved photocurrent measurements revealed that the Zn-doped specimen had shorter rise and fall times and a higher current amplitude than the pristine specimen. The photoresponsivity of the specimens increased with an increasing bias voltage or decreasing laser power. The Zn-doped SnS2 crystals had 7.18 and 3.44 times higher photoresponsivity, respectively, than the pristine crystals at a bias voltage of 20 V and a laser power of 4 × 10-8 W. The experimental results of this study indicate that Zn doping markedly enhances the optical response of SnS2 layered crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA