RESUMO
This study investigated the single-pass performance of a negative corona electrostatic precipitators (ESP) in removing suspended particulates (PM2.5 and PM10), formaldehyde (HCHO), and bioaerosols (bacteria and fungi) and measured the ozone (O3) concentration generated by ESP. The experimental results revealed that if the operational conditions for the ESP were set to high voltage (-10.5 kV) and low air flow rate (2.4 m3/min), ESP had optimal air pollutant removal efficiency. In the laboratory system, its PM2.5 and PM10 removal rates both reached 99% at optimal conditions, and its HCHO removal rate was 55%. In field tests, its PM2.5, PM10, HCHO, bacteria, and fungi removal rates reached 89%, 90%, 46%, 69%, and 85% respectively. The ESP in the laboratory system (-10.5 kV and 2.4 m3/min) generated 7.374 ppm of O3 under optimal conditions. Under the same operational conditions, O3 generated by ESP in the food waste storage room and the meeting room were 1.347 ppm and 1.749 ppm, respectively. The removal of HCHO and bioaerosols was primarily attributed to their destruction in the corona, as well as ozone oxidation, and collection on the dust collection plate.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Eliminação de Resíduos , Poluentes Atmosféricos/análise , Alimentos , Formaldeído , Ozônio/análise , Material Particulado/análise , Eletricidade EstáticaRESUMO
Dioxin pollution has been problematic in Taiwan. Although the government has established emission standards and emission inventory to control dioxin pollution, such efforts only apply to pollution emissions; no attempt has been made to understand the flow of dioxins in different environmental media. In this study, the STELLA software was used to model the flow pattern of dioxins in various media. This model and the RAIDAR model established by the Canadian Environmental Model Research Center were used to simulate dioxin flow in Taiwan, and their results were compared with the measured values. The accuracies of the RAIDAR and STELLA models were 63.92% and 49.78%, respectively. This shows that the simulation with the STELLA model provided results closer to the measured values and that the error was less than ten times that of the RAIDAR model, indicating that the proposed model is predictive. In addition, we used the results of a system dynamics model for dioxin flow and an air resource co-benefits (ARCoB) model to apply the obtained results to the energy sector to quantify the co-benefits of reducing dioxin, greenhouse gas, and air pollutant emissions on the basis of the policy target for the year 2030. The total co-benefits of natural gas and renewable energy (RE) scenarios were US$9.63 billion and US$12.57 billion, respectively; the benefit-cost ratios were 2.89 and 20.67, respectively. The development of an RE policy as an alternative to a coal-fired power generation policy will contribute to the best co-benefits of integrated reductions and will also contribute to human health.
RESUMO
This is a study of an antimicrobial test, including yeast, Aspergillus Niger, and Aspergillus Flavus, on a nanosilver colloid solution. The antibiosis is compared with a standard silver ion solution at the same concentration as in the experimental process. This study proved that the nanosilver colloid prepared by the electrical spark discharge method (ESDM) is free of any chemical additives, has a microbial control effect, and that the effect is much better than the Ag+ standard solution at the same concentration. 3M Count Plate (YM) is used to test and observe the colony counts. The microbial control test for yeast, Aspergillus Niger, and Aspergillus Flavus is implemented in the nanosilver colloid. In addition to Aspergillus flavus, an Ag+ concentration of 16 ppm is enough to inhibit the growth of the samples. At the same concentration, the nanosilver colloid has a much better microbial control effect than the Ag+ standard solution, which may be because the nanoparticle can release Ag+ continuously, so the solution using the ESDM has a more significant microbial control effect.
RESUMO
In this study, the Water Quality Analysis Simulation Program (WASP7) was used to evaluate the transmission of hexavalent chromium (Cr(VI)) contamination in a water-sediment system and its flux into cultivated soils. The agricultural areas adjacent to the Wu River in Taiwan were taken as the study area, as these soils were heavily polluted with Cr(VI) concentrations of 2173-3271 µg/kg. The rates of accumulation of Cr(VI) are affected by the distance from the source of contamination and the size and type of cultivated areas. The highest concentrations of Cr(VI) (4.27 mg/kg) were detected in soil from Changhua city and correlated with the greater risk of gastric cancer in residents. Specifically, the risk of gastric cancer due to Cr(VI) contamination of agricultural soil was 3 × 10 - 7 - 15.2 × 10 - 6 in Taichung city (upstream) and 1.3 × 10 - 6 - 76.3 × 10 - 6 in Changhua county (downstream). The values of statistical life-years (VSLYs) were US$6.2-10 million for rice, US$42-60 million for corn, and US$360-580 million for other vegetables, respectively, each year. It is critical that techniques other than source reduction are used to reduce human exposure to Cr(VI), such as chemical oxidation or ion-exchange treatment to remove Cr(VI) from factory wastewaters, prior to their discharge into rivers. PRACTITIONER POINTS: This study evaluated the transmission of hexavalent chromium (Cr(VI)) contamination in a water-sediment-soil system. Maximum concentrations of Cr(VI) most rapidly accumulated in the smallest cultivated areas. The highest concentrations of Cr(VI) (3.3 mg/kg) were correlated with the greater risk of gastric cancer. Young children had a threefold greater risk of gastric cancer than adults. Techniques other than source reduction are prior to their discharge into rivers.
Assuntos
Cromo , Qualidade da Água , Adulto , Criança , Pré-Escolar , Cromo/análise , Custos de Cuidados de Saúde , Humanos , SoloRESUMO
Increasing amounts of municipal solid waste (MSW) has gained widely concern on reduction, utilization and minimizing environmental impacts associated with waste management. Life cycle assessment (LCA) has been used to evaluate total environmental impact of municipal waste management (MSWM) options in strategy-planning and decision-making process. The exiting LCA studies have covered a large range of detailed focus from waste treatment technology to applied modelling methods in LCA of MSWM, yet an important concern for stakeholders, the relationship between practical management strategies and their LCA results, has not been comprehensively summarized. This paper reviews recent LCA studies focusing on MSWM system in 45 cases from both developing and developed regions to promote evolution of the MSWM system through modification of waste management strategies. Selected literatures conducted LCA with system boundary covering the whole MSWM system rather than single treatment process or specific type of waste. This review has explored distribution and evolution of LCA studies in waste management field and summarized critical parameters (system boundary, functional unit, assessment approach and data uncertainty) for conducting LCA of MSWM system. Comparison results from 45 worldwide cases indicated 33%-154% environmental benefit in Global warming potential (GWP) impact with implement of integrated solid waste management system to replace single landfill, incineration, or open dumping treatment. Key issues with upgrading of MSWM system have been highlighted to raise concern, i.e., the importance of targeted management strategy on organic and recyclable waste, the growing contribution of waste collection and transportation to the total environmental impact, as well as promoting multi-impacts assessment for MSWM system to achieve environmentally effective, economically affordable, and socially acceptable. Rather than focus on technical factors, results from this study indicated the key influences from understanding local limitation, environmental concern, management chain and comprehensive impact, providing useful strategies on improving MSWM with generalization results of LCA studies.
Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Animais , Cidades , Incineração , Estágios do Ciclo de Vida , Resíduos SólidosRESUMO
Adsorption as one of the most important air cleaning methods has been extensively applied during which the coexisting airborne nanoparticles (NPs) with sizes close to adsorbent pore sizes could inevitably influence gas adsorption processes. In this work, the influence of sub-20 nm NPs on toluene adsorption on ZSM-5 zeolites exchanged with different cations (Li+, Na+ and K+) were studied based on gas-and-particle coexisting adsorption/filtration tests. Affinities for both toluene and NPs on adsorbents follow Li-ZSM-5 > Na-ZSM-5 > K-ZSM-5 regarding the orders of charge density, pore size, and internal and external specific surface areas. The toluene adsorption was shown to be impaired by coexisting NPs from perspectives of thermodynamics and kinetics. For Li-ZSM-5, Na-ZSM-5 and K-ZSM-5, significant relative reductions of 10.4 %, 10.5 % and 16.0 % in toluene adsorption capacity at the lower feed concentration, and of 20.3 %, 15.2 % and 2.3 % in mass transfer coefficient at the higher feed concentration were observed, respectively. The influential mechanisms regarding competitiveness between toluene and NPs in interaction with cationic and porous surfaces were accordingly proposed, which are of practical significance for selecting robust adsorbents under realistic harsh air conditions.
RESUMO
This study examined the use of high dosages of ultraviolet germicidal irradiation (UVGI) (253.7 nm) to deal with various concentrations of air pollutants, such as formaldehyde (HCHO), total volatile organic compounds (TVOC), under various conditions of humidity. A number of irradiation methods were applied for various durations in field studies to examine the efficiency of removing HCHO, TVOC, bacteria, and fungi. The removal efficiency of air pollutants (HCHO and bacteria) through long-term exposure to UVGI appears to increase with time. The effects on TVOC and fungi concentration were insignificant in the first week; however, improvements were observed in the second week. No differences were observed regarding the removal of HCHO and TVOC among the various irradiation methods in this study; however significant differences were observed in the removal of bacteria and fungi.
Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar em Ambientes Fechados/prevenção & controle , Formaldeído/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação , Aerossóis , Poluentes Atmosféricos/efeitos da radiação , Formaldeído/efeitos da radiação , Umidade , Fotólise , Raios Ultravioleta , Compostos Orgânicos Voláteis/efeitos da radiaçãoRESUMO
This study is the first to use reliable data sources to establish a reasonable mass balance of Cr(VI) contamination in river water, sediment, and farmland soil. A system dynamics model was used to establish the interrelationships among water, Cr(VI) contamination, and health effects in the Wu River watershed (between Taichung city and Changhua county) between 2018 and 2048 (30â¯years). The results show very little Cr(VI) contamination in rivers; most flowed downstream or settled in sediment, and the accumulation of Cr(VI) in the sediment increased throughout the study period. The highest Cr(VI) concentrations in farmland soil (338.46â¯mg/kg) were reached in Changhua county as a result of greater Cr(VI) contamination from upstream and local factories. This Cr(VI) contamination led to gastric cancer risks of 5.24â¯×â¯10-4 and 4.38â¯×â¯10-6 in Changhua county and Taichung city, respectively. Although most of the Cr(VI) contamination was discharged from Taichung City, greater health risks and losses occurred downstream in Changhua county; medical costs were 55 times higher. For total quality control, a reduction rate of at least 68% should be reached in the study area. These findings will be helpful in predicting the transmission of Cr(VI) contamination over long study periods with a systematic model.
Assuntos
Cromo/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Rios/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , China , Cromo/efeitos adversos , Humanos , Modelos Teóricos , Medição de Risco , Poluentes do Solo/efeitos adversos , Poluentes Químicos da Água/efeitos adversosRESUMO
A novel antimicrobial composite of zero-valent silver nanoparticles (AgNPs), titania (TiO2 ), and chitosan (CS) was prepared via photochemical deposition of AgNPs on a CS-TiO2 matrix (AgNPs@CS-TiO2 ). Electron microscopy showed that the AgNPs were well dispersed on the CS-TiO2 , with diameters of 6.69-8.84 nm. X-ray photoelectron spectra indicated that most of the AgNPs were reduced to metallic Ag. Fourier-transform infrared spectroscopy indicated that some AgNPs formed a chelate with CS through coordination of Ag+ with the CS amide II groups. The zones of inhibition of AgNPs@CS-TiO2 for bacteria (Escherichia coli and Staphylococcus epidermidis) and fungi (Aspergillus niger and Penicillium spinulosum) were 6.72-11.08 and 5.45-5.77 mm, respectively, and the minimum (critical) concentrations of AgNPs required to inhibit the growth of bacteria and fungi were 7.57 and 16.51 µg-Ag/mm2 , respectively. The removal efficiency of a AgNPs@TiO2 -CS bed filter for bioaerosols (η) increased with the packing depth, and the optimal filter quality (qF) occurred for packing depths of 2-4 cm (qF = 0.0285-0.103 Pa-1 ; η = 57.6%-98.2%). When AgNPs@TiO2 -CS bed filters were installed in the ventilation systems of hospital wards, up to 88% of bacteria and 97% of fungi were removed within 30 minutes. Consequently, AgNPs@TiO2 -CS has promising potentials in bioaerosol purification.
Assuntos
Anti-Infecciosos/administração & dosagem , Quitosana , Desinfecção/métodos , Nanopartículas Metálicas , Nanocompostos/administração & dosagem , Prata , Titânio , Aerossóis , Filtros de Ar , Microbiologia do Ar , Anti-Infecciosos/química , Unidades Hospitalares , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ventilação/métodosRESUMO
A dynamic multimedia transport (DMT) model for polycyclic aromatic hydrocarbons (PAHs) was constructed using the system dynamics software STELLA to simulate the transmission and flow of PAHs in different media. Humans are primarily exposed to PAHs via ingestion. Thus, this study used the DMT model to simulate the concentrations of PAHs in food media and the human body and assess the risk of harm to humans. On the basis of the hypothesis of PAH reduction in the Taiwanese steel industry, two scenarios were used (cases I and II), and integration indicators such as the Air Resource Co-Benefit Model of air pollutants, greenhouse gases, and PAHs reduction was established for the cost-benefit analysis of the reduction scenarios. This study not only established Taiwan's PAHs dynamic multimedia transmission model successfully but also performed a reduction scenario on the steel industry. In the year 2025, the total costs for cases I and II will be USD 690 and USD 694 million per year, respectively, and the total benefits will be USD 492 and 1669 million per year, respectively. Therefore, case II is preferable to case I in terms of benefit ratio (2.40 vs. 2.35, respectively).
Assuntos
Poluentes Ambientais/análise , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/análise , Análise Custo-Benefício , Exposição Dietética , Poluição Ambiental/economia , Poluição Ambiental/prevenção & controle , Gases de Efeito Estufa/análise , Humanos , Metalurgia , Medição de Risco , Aço , TaiwanRESUMO
This study examined the effect of potassium permanganate (KMnO4)-modified activated carbon for formaldehyde removal under different face velocities and different initial formaldehyde concentrations in building environment. We chose the coconut shell activated carbon due to their high density and purity. Moreover, they have a clear environmental advantage over coal-based carbons, particularly in terms of acidification potential. The chemical properties were characterized by FTIR to show the functional groups, EDS to calculate each component of their energy bands to know how the ratio is. Also, the morphology of the surface was examined with scanning electron microscopy (SEM). The BET determines specific surface area, pore size, and pore volume. It was found that where the initial formaldehyde concentration and the face velocity are low, adsorption capacity is high. The adsorption isotherms of formaldehyde on modified activated carbon are well fitted by both Langmuir and Freundlich equations. The rate parameter for the pseudo-first-order model, pseudo-second-order model, and intraparticle diffusion model was compared. The correlation coefficient of pseudo-second-order kinetic model (0.999 > R2 > 0.9548) is higher than the coefficient of pseudo-first-order kinetic model (0.5785 < R2 < 0.8755) and intraparticle diffusion model (0.9752 < R2 < 0.9898). Thus, pseudo-second-order kinetic model is more apposite to discuss the adsorption kinetic in this test, and the overall rate of the modified activated carbon adsorption process appears to be influenced by more than one step that is both the intraparticle diffusion model and membrane diffusion.
Assuntos
Poluentes Atmosféricos/isolamento & purificação , Carvão Vegetal/química , Formaldeído/isolamento & purificação , Permanganato de Potássio/química , Adsorção , Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados , Cocos/química , Difusão , Formaldeído/química , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de SuperfícieRESUMO
Mercury and dioxin pollution associated with the China Petrochemical Development Corporation's An-shun plant is one of the most severe soil contamination incidents in Taiwan's history. Residents living nearby were exposed to heavy metals and dioxins that led to significant impacts on human health and safety. While many studies related to contamination in large-scale industrial areas have been conducted to evaluate the effects of occupational contaminant exposure, studies related to people who live near small-scale industry areas are less common. In this study, we use the system dynamics modeling to build a media flow pattern for mercury and dioxin in the vicinity of the An-shun plant, simulate the concentrations of the pollutants before and after remediation, and compare the simulated values with the measurements of actual conditions after remediation to evaluate the feasibility and accuracy of the model. This study also estimated the concentration of mercury and dioxin in each food medium to simulate the daily exposure of the human body to these contaminants. Finally, the reduction in mercury and dioxin levels in the study area was used to estimate the total health benefits to the local population. The objective of this study was to evaluate the application of this methodology to small-scale industrial areas as well as improve the decision-making process before, during, and after remediation of contaminated sites. The results of this study revealed the health benefits to residents living in the Annan District after remediation was completed at the An-shun plant were significant.
RESUMO
Large amount of calcium fluoride sludge was generated by semiconductor industry every year. It also needs high requirement of fuel consumption using rotor concentrator and thermal oxidizer to treat VOCs. The mesoporous catalyst prepared by calcium fluoride sludge was used for VOCs treatment in this study. Acetone is a kind of solvent and used in a large number of laboratories and factories. The serious problems will be caused when it exposed to the environmental. Economic and practical technology is needed to eliminate this kind of hazardous air pollutant. In this research, the adsorption of acetone was tested with CF-MCM (mesoporous silica materials synthesized from calcium fluoride). The raw material was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants, firstly. The prepared mesoporous silica materials were characterized by nitrogen adsorption and desorption analysis, transmission electron microscope (TEM), scanning electron microscopy (SEM), X-ray powder diffractometer (XRPD) and Fourier transform infrared spectroscopy (FTIR). The results showed that the surface area, large pore volume and pore diameter could be up to 862 m2 g(-1), 0.57 cm3 g(-1) and 2.9 nm, respectively. The crystal patterns of CF-MCM were similar with MCM-41 from TEM image. The adsorption capacity of acetone with CF-MCM was 118, 190, 194 and 201 mg g(-1), respectively, under 500, 1000, 1500 and 2000 ppm. Furthermore, the adsorption capacity of MCM-41 and CF-MCM was almost the same. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.
RESUMO
Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.
Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Moxibustão , Ambulatório Hospitalar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Monitoramento Ambiental , Formaldeído/análise , Medicina Tradicional Chinesa , Material Particulado/análise , Taiwan , Ventilação , Compostos Orgânicos Voláteis/análiseRESUMO
Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.
Assuntos
Poluentes Atmosféricos/análise , Emulsões/química , Gasolina/análise , Material Particulado/análise , Emissões de Veículos/análise , Água/química , Emulsões/análise , Tamanho da Partícula , Temperatura , Água/análiseRESUMO
The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%.
Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Tecnologia sem Fio/instrumentação , Calibragem , Padrões de Referência , Temperatura , Tecnologia sem Fio/normasRESUMO
This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.
Assuntos
Reciclagem/métodos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Alimentos , Utensílios Domésticos , Incineração , Plásticos , TaiwanRESUMO
Gold used to be considered to have no catalytic activity. In the 1980s, however, Masatake Haruta found that nano-sized gold particles supported by metal oxides can catalyze the oxidation of carbon monoxide. This work examines the oxidation of carbon monoxide (CO) and the adsorption/desorption behaviors on nano-sized gold catalyst at room temperature by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Carbonate, bicarbonate and carboxylate were observed. The effects of various factors (relative humidity, CO gas concentration, and total surface area) on the CO conversion efficiency were studied using the response surface designs in the Experiment Design Method. The results indicate that the conversion efficiency of CO was high when the ratio of CO and O(2) was close to 1:1. The gas concentration is the most important factor, followed by the weight of gold catalyst, followed by relative humidity. An appropriate humidity enhances the catalytic reaction in the long-term.
Assuntos
Monóxido de Carbono/química , Nanopartículas Metálicas/química , Oxigênio/química , Adsorção , Bicarbonatos , Carbonatos , Ácidos Carboxílicos , Catálise , Ouro , Umidade , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
A new approach to simultaneously remove nitrogen monoxide (NO) and sulfur dioxide (SO2) by zero valent iron (ZVI) was investigated. Three different parameters, temperature, flux, and ZVI dosage, were tested in fluidized ZVI column studies containing 500 ppmv of NO and SO2, respectively. Under the ZVI dosage of 0.5 g at flux of 0.6 L/cm2 x min for temperature 573 K, there is neither NO nor SO2 reduction. For 623 K and 673 K, complete removal for NO and > 90% removal for SO2 were achieved. For temperatures of 723 K and 773 K, 100% removal was achieved for both NO and SO2. The amounts of NO or SO2 reduction (as milligrams of NO or SO2 per gram ZVI) increased as temperature increased, and linearities were observed with both correlation coefficients > 0.97. Compared with NO, SO2 had earlier breakthrough because of a slower diffusion rate and less reactivity but higher mass reduction because of a higher molecular weight for SO2 (64 g/mol for SO2 and 30 g/mol for NO). At same temperature, both NO and SO2 reductions (as milligrams of NO or SO2 per gram of ZVI) were constant regardless of either flux or ZVI dosage variation, but breakthrough time was affected by both flux and ZVI dosage. A parameter weight of ZVI/flux (W/F) was developed to represent these two parameters at the same time to assess the breakthrough time of NO and SO2. Higher breakthrough time was achieved for higher W/F value. Moreover, interestingly, longer breakthrough time and more NO and SO2 mass reduction were achieved for combined NO and SO2 than individual NO or SO2 treated by ZVI, and both oxidation and reduction reactions occurred instead of a reduction reaction only. Chemical reactions among ZVI/NO, ZVI/ SO2, and ZVI/NO/SO2 were also proposed and verified by X-ray diffraction analyses.