Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 195, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168147

RESUMO

Amorphous indium tin zinc oxide (a-ITZO)/Bi2Se3 nanoplatelets (NPs) were fabricated using a two-step procedure. First, Bi2Se3 NPs were synthesized through thermal chemical vapor deposition at 600 °C on a glass substrate, and then a-ITZO was deposited on the surface of the Bi2Se3 NPs via magnetron sputtering at room-temperature. The crystal structures of the a-ITZO/Bi2Se3 NPs were determined via X-ray diffraction spectroscopy and high-resolution transmission electron microscopy. The elemental vibration modes and binding energies were measured using Raman spectroscopy and X-ray photoelectron spectroscopy. The morphologies were examined using field-emission scanning electron microscopy. The electrical properties of the a-ITZO/Bi2Se3 NPs were evaluated using Hall effect measurements. The bulk carrier concentration of a-ITZO was not affected by the heterostructure with Bi2Se3. In the case of the Bi2Se3 heterostructure, the carrier mobility and conductivity of a-ITZO were increased by 263.6% and 281.4%, respectively, whereas the resistivity of a-ITZO was reduced by 73.57%. This indicates that Bi2Se3 significantly improves the electrical properties of a-ITZO through its heterostructure, expanding its potential applications in electronic and thermoelectric devices.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630923

RESUMO

In this study, differently shaped silver nanoparticles used for the synthesis of gold nanoclusters with small capping ligands were demonstrated. Silver nanoparticles provide a reaction platform that plays dual roles in the formation of Au NCs. One is to reduce gold ions and the other is to attract capping ligands to the surface of nanoparticles. The binding of capping ligands to the AgNP surface creates a restricted space on the surface while gold ions are being reduced by the particles. Four different shapes of AgNPs were prepared and used to examine whether or not this approach is dependent on the morphology of AgNPs. Quasi-spherical AgNPs and silver nanoplates showed excellent results when they were used to synthesize Au NCs. Spherical AgNPs and triangular nanoplates exhibited limited synthesis of Au NCs. TEM images demonstrated that Au NCs were transiently assembled on the surface of silver nanoparticles in the method. The formation of Au NCs was observed on the whole surface of the QS-AgNPs if the synthesis of Au NCs was mediated by QS-AgNPs. In contrast, formation of Au NCs was only observed on the edges and corners of AgNPts if the synthesis of Au NCs was mediated by AgNPts. All of the synthesized Au NCs emitted bright red fluorescence under UV-box irradiation. The synthesized Au NCs displayed similar fluorescent properties, including quantum yields and excitation and emission wavelengths.

3.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835599

RESUMO

A new strategy using silver nanoparticles (Ag NPs) to synthesize thiolated Au NCs is demonstrated. The quasi-spherical Ag NPs serve as a platform, functioning as a reducing agent for Au (III) and attracting capping ligands to the surface of the Ag NPs. Glutathione disulfide (GSSG) and dithiothreitol (DTT) were used as capping ligands to synthesize thiolated Au NCs (glutathione-Au NCs and DTT-Au NCs). The glutathione-Au NCs and DTT-Au NCs showed red color luminance with similar emission wavelengths (630 nm) at an excitation wavelength of 354 nm. The quantum yields of the glutathione-Au NCs and DTT-Au NCs were measured to be 7.3% and 7.0%, respectively. An electrophoretic mobility assay showed that the glutathione-Au NCs moved toward the anode, while the DTT-Au NCs were not mobile under the electric field, suggesting that the total net charge of the thiolated Au NCs is determined by the charges on the capping ligands. The detection of the KSV values, 26 M-1 and 0 M-1, respectively, revealed that glutathione-Au NCs are much more accessible to an aqueous environment than DTT-Au NCs.

4.
Dalton Trans ; 48(36): 13820-13833, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31482912

RESUMO

The intramolecular magnetic interactions in one-electron oxidized iron(iii) porphyrin π-radical cations, [Fe(OETPP˙)Cl][SbCl6] (1), [Fe(OMTPP˙)Cl][SbCl6] (2) and [Fe(TPP˙)Cl][SbCl6] (3), have been compared by means of X-ray crystallography, SQUID magnetometry, cyclic voltammetry, UV-Vis spectroelectrochemical analysis, NMR spectroscopy analysis and unrestricted DFT calculations. Unlike a generally recognized antiferromagnetic coupling dxy↑dxz↑dyz↑dz2↑dx2-y2↑P˙+(a2u)↓ (S = 2) state via a weak bonding interaction as in (3), we have disclosed that a strong bonding interaction among iron dx2-y2 and porphyrin a2u orbitals forms in (1) into a highly delocalized Ψπ = [P˙+(a2u) + FeIII(dx2-y2, dz2)] orbital that is able to accommodate two spin-paired electrons to form the Ψπ2dxy1dxz1dyz1, dz21 (S = 2) ground state. Concurrently, the spin polarization effect is exerted on the paired spins in the Ψπ orbital by magnetic induction from the remaining unpaired electrons in the iron d orbitals. The interpretation mentioned above is further verified by the diamagnetic nature of the saddled copper(ii) porphyrin π-cation radical, CuII(OETPP˙)(ClO4) (S = 0), where the strong bonding interaction leads to the Ψπ2dxy2dxz2dyz2dz22 (S = 0) ground state but no spin polarization exists. Thus, the magnetic nature of the iron(iii) porphyrin π-radical cation is tuneable by saddling the ring planarity.

5.
Dalton Trans ; 48(16): 5203-5213, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30941378

RESUMO

Protons play an important role in promoting O-O or M-O bond cleavage of metal-peroxo complexes. Treatment of side-on O2-bound [PPN][MnIV(TMSPS3)(O2)] (1, PPN = bis(triphenylphosphine)iminium and TMSPS3H3 = 2,2',2''-trimercapto-3,3',3''-tris(trimethylsilyl)triphenylphosphine) with perchloric acid (HClO4) in the presence of PR3 (R = phenyl or p-tolyl) results in the formation of neutral five-coordinate MnIII(OPR3)(TMSPS3) complexes (R = phenyl, 2a; p-tolyl, 2b), which are confirmed by X-ray crystallography. Isotope labelling experiments demonstrate that the oxygen atom in the phosphine oxide product derives from the peroxo ligand of 1. Reactions of 1 with weak proton donors, such as phenylthiol, phenol, substituted phenol and methanol, are also investigated to explore the reactivity of the MnIV-peroxo complex, leading to the isolation of a series of five-coordinate [MnIII(L)(TMSPS3)]- complexes (L = phenylthiolate, phenolate or methoxide). Mechanistic aspects of the reactions of the MnIV-peroxo complex with proton donors are discussed as well.

6.
Chemistry ; 24(45): 11568-11572, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889323

RESUMO

The formation of [(N4Py)FeIV =O]2+ species was accomplished by the reaction of [FeII (N4Py)]2+ with 20 equivalents of tBuO2 H (TBHP, 70 % in H2 O). The temperature, [FeII (N4Py)]2+ -concentration and H2 O-concentration in anhydrous TBHP (5.5 m in decane) dependences of its yields and rates were analyzed to indicate that the proton migration from [(N4Py)FeII -HOOtBu]2+ to [(N4Py)FeII -OO⊕ HtBu]2+ is the rate-determining step followed by rapid heterolytic O-O bond cleavage of FeII -OO⊕ HtBu to FeIV =O complex. The formation of [(TPA)FeIV =O]2+ is thus revealed to be greatly enhanced by the similar oxidation of [FeII (TPA)]2+ (40 mm) with 10 equivalents of tBuO2 H at -45 °C. These results demonstrate the heterolytic O-O bond cleavage of FeII -alkylperoxo species to form FeIV =O originating from the direct reaction of iron(II) complexes/TBHP. The observation of concentration and temperature effects leads to the hypothesis that O-O bond homolysis is a kinetic control pathway and O-O bond heterolysis is a thermodynamic control pathway.

7.
Chem Commun (Camb) ; 50(91): 14265-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25285419

RESUMO

Ni(III)(OETPP˙)(Br)2 is the first Ni(III) porphyrin radical cation with structural and (1)H and (13)C paramagnetic NMR data for porphyrinate systems. Associating EPR and NMR analyses with DFT calculations as a new model is capable of clearly determining the dominant state from two controversial spin distributions in the ring to be the Ni(III) LS coupled with an a1u spin-up radical.


Assuntos
Metaloporfirinas/química , Níquel/química , Isótopos de Carbono , Cátions/síntese química , Cátions/química , Radicais Livres/síntese química , Radicais Livres/química , Espectroscopia de Ressonância Magnética , Metaloporfirinas/síntese química , Modelos Moleculares , Prótons , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA