Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (132)2018 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-29443075

RESUMO

The effect of physical cues, such as the stiffness of biomaterials on the proliferation and differentiation of stem cells, has been investigated by several researchers. However, most of these investigators have used polyacrylamide hydrogels for stem cell culture in their studies. Therefore, their results are controversial because those results might originate from the specific characteristics of the polyacrylamide and not from the physical cue (stiffness) of the biomaterials. Here, we describe a protocol for preparing hydrogels, which are not based on polyacrylamide, where various stem, cells including human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cells, can be cultured. Hydrogels with varying stiffness were prepared from bioinert polyvinyl alcohol-co-itaconic acid (P-IA), with stiffness controlled by crosslinking degree by changing crosslinking time. The P-IA hydrogels grafted with and without oligopeptides derived from extracellular matrix were investigated as a future platform for stem cell culture and differentiation. The culture and passage of amniotic fluid stem cells, adipose-derived stem cells, human ES cells, and human iPS cells is described in detail here. The oligopeptide P-IA hydrogels showed superior performances, which were induced by their stiffness properties. This protocol reports the synthesis of the biomaterial, their surface manipulation, along with controlling the stiffness properties and finally, their impact on stem cell fate using xeno-free culture conditions. Based on recent studies, such modified substrates can act as future platforms to support and direct the fate of various stem cells line to different linkages; and further, regenerate and restore the functions of the lost organ or tissue.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Álcool de Polivinil/uso terapêutico , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/citologia , Álcool de Polivinil/farmacologia
2.
Lab Invest ; 97(10): 1167-1179, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28869589

RESUMO

Cardiovascular disease remains the leading cause of death and disability in advanced countries. Stem cell transplantation has emerged as a promising therapeutic strategy for acute and chronic ischemic cardiomyopathy. The current status of stem cell therapies for patients with myocardial infarction is discussed from a bioengineering and biomaterial perspective in this review. We describe (a) the current status of clinical trials of human pluripotent stem cells (hPSCs) compared with clinical trials of human adult or fetal stem cells, (b) the gap between fundamental research and application of human stem cells, (c) the use of biomaterials in clinical and pre-clinical studies of stem cells, and finally (d) trends in bioengineering to promote stem cell therapies for patients with myocardial infarction. We explain why the number of clinical trials using hPSCs is so limited compared with clinical trials using human adult and fetal stem cells such as bone marrow-derived stem cells.


Assuntos
Bioengenharia , Ensaios Clínicos como Assunto , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Materiais Biocompatíveis , Bioengenharia/métodos , Bioengenharia/tendências , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Pesquisa com Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA