Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4305, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862480

RESUMO

Antiferromagnets (AFMs) have the natural advantages of terahertz spin dynamics and negligible stray fields, thus appealing for use in domain-wall applications. However, their insensitive magneto-electric responses make controlling them in domain-wall devices challenging. Recent research on noncollinear chiral AFMs Mn3X (X = Sn, Ge) enabled us to detect and manipulate their magnetic octupole domain states. Here, we demonstrate a current-driven fast magnetic octupole domain-wall (MODW) motion in Mn3X. The magneto-optical Kerr observation reveals the Néel-like MODW of Mn3Ge can be accelerated up to 750 m s-1 with a current density of only 7.56 × 1010 A m-2 without external magnetic fields. The MODWs show extremely high mobility with a small critical current density. We theoretically extend the spin-torque phenomenology for domain-wall dynamics from collinear to noncollinear magnetic systems. Our study opens a new route for antiferromagnetic domain-wall-based applications.

2.
ACS Nano ; 17(24): 25689-25696, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38050827

RESUMO

Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental conditions. It is an active contender for the development and implementation of cutting-edge quantum technologies. Here, we report magnetic domain wall motion driven local control and measurements of the NV spin properties. By engineering the local magnetic field environment of an NV center via nanoscale reconfigurable domain wall motion, we show that NV photoluminescence, spin level energies, and coherence time can be reliably controlled and correlated to the magneto-transport response of a magnetic device. Our results highlight the electrically tunable dipole interaction between NV centers and nanoscale magnetic structures, providing an attractive platform to realize interactive information transfer between spin qubits and nonvolatile magnetic memory in hybrid quantum spintronic systems.

3.
Phys Rev Lett ; 130(16): 168102, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154639

RESUMO

Adopting a spintronics-inspired approach, we study the reciprocal coupling between ionic charge currents and nematic texture dynamics in a uniaxial nematic electrolyte. Assuming quenched fluid dynamics, we develop equations of motion analogously to spin torque and spin pumping. Based on the principle of least dissipation of energy, we derive the adiabatic "nematic torque" exerted by ionic currents on the nematic director field as well as the reciprocal motive force on ions due to the orientational dynamics of the director. We discuss several simple examples that illustrate the potential functionality of this coupling. Furthermore, using our phenomenological framework, we propose a practical means to extract the coupling strength through impedance measurements on a nematic cell. Exploring further applications based on this physics could foster the development of nematronics-nematic iontronics.

4.
Phys Rev Lett ; 130(3): 036701, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763400

RESUMO

We study, theoretically, domain wall (DW) magnons-elementary collective excitations of magnetic DWs-in easy-axis layered van der Waals (vdW) antiferromagnets, where they behave as normal modes of coupled spin superfluids. We uncover that, due to spin-charge coupling in vdW magnets, such DW magnons can be activated by voltage-induced torques, thereby providing a path for their low-dissipation and nanoscale excitation. Moreover, the electrical activation and the number of DW magnons at a frequency can be controlled by applying symmetry-breaking static magnetic field, adding tunability of signal transmission by them. Our results highlight that domain walls in vdW magnets provide a promising platform to route coherent spin information for a broad range of explorations in spintronics and magnetism.

5.
Nat Nanotechnol ; 18(3): 227-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690739

RESUMO

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.

6.
Nano Lett ; 22(14): 5810-5817, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35816128

RESUMO

Topological materials featuring exotic band structures, unconventional current flow patterns, and emergent organizing principles offer attractive platforms for the development of next-generation transformative quantum electronic technologies. The family of MnBi2Te4 (Bi2Te3)n materials is naturally relevant in this context due to their nontrivial band topology, tunable magnetism, and recently discovered extraordinary quantum transport behaviors. Despite numerous pioneering studies to date, the local magnetic properties of MnBi2Te4 (Bi2Te3)n remain an open question, hindering a comprehensive understanding of their fundamental material properties. Exploiting nitrogen-vacancy (NV) centers in diamond, we report nanoscale quantum imaging of the magnetic phase transitions and spin fluctuations in exfoliated MnBi4Te7 flakes, revealing the underlying spin transport physics and magnetic domains at the nanoscale. Our results highlight the unique advantage of NV centers in exploring the magnetic properties of emergent quantum materials, opening new opportunities for investigating the interplay between topology and magnetism.

7.
Sci Adv ; 8(1): eabg8562, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995122

RESUMO

Antiferromagnetic insulators (AFIs) are of substantial interest because of their potential in the development of next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a noninvasive method to optically access the intrinsic spin transport properties of an archetypical AFI α-Fe2O3 via nitrogen-vacancy (NV) quantum spin sensors. By NV relaxometry measurements, we successfully detect the frequency-dependent dynamic fluctuations of the spin density of α-Fe2O3 along the Néel order parameter, from which an intrinsic spin diffusion constant of α-Fe2O3 is experimentally measured in the absence of external spin biases. Our results highlight the significant opportunity offered by NV centers in diagnosing the underlying spin transport properties in a broad range of high-frequency magnetic materials such as two-dimensional magnets, spin liquids, and magnetic Weyl semimetals, which are challenging to access by the conventional measurement techniques.

8.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523993

RESUMO

The theory behind the electrical switching of antiferromagnets is premised on the existence of a well-defined broken symmetry state that can be rotated to encode information. A spin glass is, in many ways, the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. Here, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3 + δNbS2, rooted in the electrically stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. Manipulating antiferromagnetic spin textures using a spin glass' collective dynamics opens the field of antiferromagnetic spintronics to new material platforms with complex magnetic textures.

9.
Phys Rev Lett ; 125(21): 217201, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274995

RESUMO

Magnon polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here, we report an observation of antiferromagnetic (AFM) magnon polarons in a uniaxial AFM insulator Cr_{2}O_{3}. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ∼6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon polarons at low temperatures.

10.
Phys Rev Lett ; 125(20): 207202, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258612

RESUMO

We propose a spintronics-based hardware implementation of neuromorphic computing, specifically, the spiking neural network, using topological winding textures in one-dimensional antiferromagnets. The consistency of such a network is emphasized in light of the conservation of topological charges, and the natural spatiotemporal interconversions of magnetic winding. We discuss the realization of the leaky integrate-and-fire behavior of neurons and the spike-timing-dependent plasticity of synapses. Our proposal opens the possibility for an all-spin neuromorphic platform based on antiferromagnetic insulators.

11.
Nat Commun ; 11(1): 949, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075968

RESUMO

Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

12.
Phys Rev Lett ; 125(26): 267201, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449784

RESUMO

We theoretically investigate the dynamics of magnetic hedgehogs, which are three-dimensional topological spin textures that exist in common magnets, focusing on their transport properties and connections to spintronics. We show that fictitious magnetic monopoles carried by hedgehog textures obey a topological conservation law, based on which a hydrodynamic theory is developed. We propose a nonlocal transport measurement in the disordered phase, where the conservation of the hedgehog flow results in a nonlocal signal decaying inversely proportional to the distance. The bulk-edge correspondence between the hedgehog number and skyrmion number, the fictitious electric charges arising from magnetic dynamics, and the analogy between bound states of hedgehogs in ordered phase and the quark confinement in quantum chromodynamics are also discussed. Our study points to a practical potential in utilizing hedgehog flows for long-range neutral signal propagation or manipulation of skyrmion textures in three-dimensional magnetic materials.

13.
Phys Rev Lett ; 122(12): 127203, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978080

RESUMO

We investigate the Gilbert damping parameter α for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, α was as low as the order of 10^{-3} and was almost constant across the angular momentum compensation temperature T_{A}, starkly contrasting previous predictions that α should diverge at T_{A} due to a vanishing total angular momentum. Thus, magnetic damping of RE-TM ferrimagnets is not related to the total angular momentum but is dominated by electron scattering at the Fermi level where the TM has a dominant damping role. This low value of the Gilbert damping parameter suggests that ferrimagnets can serve as versatile platforms for low-dissipation high-speed magnetic devices.

14.
Phys Rev Lett ; 122(5): 057204, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822023

RESUMO

We theoretically study the thermal Hall effect by magnons in skyrmion crystal phases of ferrimagnets in the vicinity of the angular momentum compensation point (CP). To this end, we start by deriving the equation of motion for magnons in the background of an arbitrary equilibrium spin texture, which gives rise to the fictitious electromagnetic field for magnons. As the net spin density varies, the resultant equation of motion interpolates between the relativistic Klein-Gordon equation at the CP and the nonrelativistic Schrödinger-like equation away from it. In skyrmion crystal phases, the right- and the left-circularly polarized magnons, with respect to the order parameter, are shown to form the Landau levels separately within the uniform skyrmion-density approximation. For an experimental proposal, we predict that the magnonic thermal Hall conductivity changes its sign when the ferrimagnet is tuned across the CP, providing a way to control heat flux in spin-caloritronic devices on the one hand and a feasible way to detect the CP of ferrimagnets on the other hand.

15.
Nat Nanotechnol ; 14(3): 232-236, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664756

RESUMO

In the presence of a magnetic field, the flow of charged particles in a conductor is deflected from the direction of the applied force, which gives rise to the ordinary Hall effect. Analogously, moving skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications such as skyrmion racetrack memory. It was predicted that the skyrmion Hall effect vanishes for antiferromagnetic skyrmions because their fictitious magnetic field, proportional to net spin density, is zero. Here we investigate the current-driven transverse elongation of pinned ferrimagnetic bubbles. We estimate the skyrmion Hall effect from the angle between the current and the bubble elongation directions. The angle and, hence, the skyrmion Hall effect vanishes at the angular momentum compensation temperature where the net spin density vanishes. Furthermore, our study establishes a direct connection between the fictitious magnetic field and the spin density.

16.
Phys Rev Lett ; 121(18): 187203, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444405

RESUMO

Departing from the conventional view on superconducting vortices as a parasitic source of dissipation for charge transport, we propose to use mobile vortices as topologically stable information carriers. To this end, we start by constructing a phenomenological theory for the interconversion between spin and vorticity, a topological charge carried by vortices, at the interface between a magnetic insulator and a superconductor, by invoking the interfacial spin Hall effect therein. We then show that a vortex liquid in superconductors can serve as a spin-transport channel between two magnetic insulators by encoding spin information in the vorticity. The vortex-mediated nonlocal signal between the two magnetic insulators is shown to decay algebraically as a function of their separation, contrasting with the exponential decay of the quasiparticle-mediated spin transport. We envision that hydrodynamics of topological excitations, such as vortices in superconductors and domain walls in magnets, may serve as a universal framework to discuss long-range transport properties of ordered materials.

17.
Phys Rev Lett ; 121(16): 167001, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387633

RESUMO

It has been recognized that the condensation of spin-triplet Cooper pairs requires not only broken gauge symmetry but also spin ordering as well. One consequence of this is the possibility of a Cooper-pair spin current analogous to the magnon spin current in magnetic insulators, the analogy also extending to the existence of the Gilbert damping of the collective spin-triplet dynamics. The recently fabricated heterostructure of the thin film of the itinerant ferromagnet SrRuO_{3} on bulk Sr_{2}RuO_{4}, the best-known candidate material for a spin-triplet superconductor, offers a promising platform for generating such spin current. We show how such heterostructure allows us to not only realize the long-range spin valve but also electrically drive the collective spin mode of the spin-triplet order parameter. Our proposal represents both a novel experimental realization of superfluid spin transport and a transport signature of the spin-triplet superconductivity therein.

18.
Phys Rev Lett ; 121(12): 127701, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296130

RESUMO

We formulate an energy-storage concept based on the free energy associated with metastable magnetic configurations. Despite the active magnetic region of the battery being electrically insulating, it can sustain effective hydrodynamics of spin textures, whose conservation law is governed by topology. To illustrate the key physics and potential functionality, we focus here on the simplest quasi-one-dimensional case of planar winding of the magnetic order parameter. The energy is stored in the metastable winding number, which can be injected electrically by an appropriately tailored spin torque. Because of the nonvolatility and the endurance of magnetic systems, the injected energy can be stored essentially indefinitely, with the topological charge cycles that do not degrade over time.

19.
Nat Commun ; 9(1): 3612, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190509

RESUMO

Magnetic insulators (MIs) attract tremendous interest for spintronic applications due to low Gilbert damping and the absence of Ohmic loss. Spin-orbit torques (SOTs) on MIs are more intriguing than magnetic metals since SOTs cannot be transferred to MIs through direct injection of electron spins. Understanding of SOTs on MIs remains elusive, especially how SOTs scale with the MI film thickness. Here, we observe the critical role of dimensionality on the SOT efficiency by studying the MI layer thickness-dependent SOT efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We show that the TmIG thin film evolves from two-dimensional to three-dimensional magnetic phase transitions as the thickness increases. We report the significant enhancement of the measured SOT efficiency as the TmIG thickness increases, which is attributed to the increase of the magnetic moment density. We demonstrate the current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up to 15 nm.

20.
Phys Rev Lett ; 121(3): 037202, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085822

RESUMO

Spin-torque-biased magnetic dynamics in an easy-plane ferromagnet (EPF) is theoretically studied in the presence of a weak in-plane anisotropy. While this anisotropy spoils U(1) symmetry, thereby quenching the conventional spin superfluidity, we show that the system instead realizes a close analog of a long Josephson junction (LJJ) model. The traditional magnetic-field and electric-current controls of the latter map, respectively, onto the symmetric and antisymmetric combinations of the out-of-plane spin torques applied at the ends of the magnetic strip. This suggests an alternative route towards realizations of superfluidlike transport phenomena in insulating magnetic systems. We study a spin-torque-biased phase diagram, providing an analytical solution for static multidomain phases in the EPF. We adapt an existing self-consistency method for the LJJ to develop an approximate solution for the EPF dynamics. The LJJ-EPF mapping has the potential for producing applications with superconductor-based circuit functionality at elevated temperatures. The results apply equally to antiferromagnets with suitable effective free energy in terms of the Néel order instead of in-plane magnetization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA