Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 81(18): 4874-4885, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526347

RESUMO

Altered mechanical properties of the tumor matrix have emerged as both the cause and consequence of breast carcinogenesis. Increased tumor stiffness has traditionally provided a viable metric to screen for malignancies via palpation or imaging. Previous studies have demonstrated that the microscale mechanical properties of the cell substrate influence tumor proliferation and invasive migration in vitro. Nevertheless, the association of the mechanical microenvironment with clinical hallmarks of aggressiveness in human breast tumors, including histopathological subtype, grade, receptor expression status, and lymph node involvement is poorly understood. This is largely due to the lack of tools for mapping tumor viscoelastic properties in clinical specimens with high spatial resolution over a large field of view (FoV). Here we introduce laser Speckle rHEologicAl micRoscopy (SHEAR) that for the first time enables mapping the magnitude viscoelastic or shear modulus, |G*(x,y,ω)|, over a range of frequencies (ω = 1-250 rad/second) in excised tumors within minutes with a spatial resolution of approximately 50 µm, over multiple cm2 FoV. Application of SHEAR in a cohort of 251 breast cancer specimens from 148 patients demonstrated that |G*(x,y,ω)| (ω = 2π rad/second) closely corresponds with histological features of the tumor, and that the spatial gradient of the shear modulus, |∇|G*(x,y,ω)||, is elevated at the tumor invasive front. Multivariate analyses established that the metrics, (|G* |) and (|∇|G* ||), measured by SHEAR are associated with prognosis. These findings implicate the viscoelastic properties of the tumor microenvironment in breast cancer prognosis and likely pave the path for identifying new modifiable targets for treatment. SIGNIFICANCE: Laser speckle rheological microscopy establishes the links between microscale heterogeneities of viscoelasticity and histopathological subtype, tumor grade, receptor expression, as well as lymph node status in breast carcinoma.


Assuntos
Fenômenos Mecânicos , Microscopia Confocal , Neoplasias/patologia , Reologia , Microambiente Tumoral , Algoritmos , Biomarcadores Tumorais , Humanos , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/diagnóstico por imagem , Neoplasias/etiologia
2.
Am J Hematol ; 96(8): 968-978, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971046

RESUMO

During cardiac surgery with cardiopulmonary bypass (CPB), altered hemostatic balance may disrupt fibrin assembly, predisposing patients to perioperative hemorrhage. We investigated the utility of a novel device termed spectrally-encoded confocal microscopy (SECM) for assessing fibrin clot polymerization following heparin and protamine administration in CPB patients. SECM is a novel, high-speed optical approach to visualize and quantify fibrin clot formation in three dimensions with high spatial resolution (1.0 µm) over a volumetric field-of-view (165 × 4000 × 36 µm). The measurement sensitivity of SECM was first determined using plasma samples from normal subjects spiked with heparin and protamine. Next, SECM was performed in plasma samples from patients on CPB to quantify the extent to which fibrin clot dynamics and microstructure were altered by CPB exposure. In spiked samples, prolonged fibrin time (4.4 ± 1.8 to 49.3 ± 16.8 min, p < 0.001) and diminished fibrin network density (0.079 ± 0.010 to 0.001 ± 0.002 A.U, p < 0.001) with increasing heparin concentration were reported by SECM. Furthermore, fibrin network density was not restored to baseline levels in protamine-treated samples. In CPB patients, SECM reported lower fibrin network density in protaminized samples (0.055 ± 0.01 A.U. [Arbitrary units]) vs baseline values (0.066 ± 0.009 A.U.) (p = 0.03) despite comparable fibrin time (baseline = 6.0 ± 1.3, protamine = 6.4 ± 1.6 min, p = 0.5). In these patients, additional metrics including fibrin heterogeneity, length and straightness were quantified. Note, SECM revealed that following protamine administration with CPB exposure, fibrin clots were more heterogeneous (baseline = 0.11 ± 0.02 A.U, protamine = 0.08 ± 0.01 A.U, p = 0.008) with straighter fibers (baseline = 0.918 ± 0.003A.U, protamine = 0.928 ± 0.0006A.U. p < 0.001). By providing the capability to rapidly visualize and quantify fibrin clot microstructure, SECM could furnish a new approach for assessing clot stability and hemostasis in cardiac surgical patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Fibrina/ultraestrutura , Microscopia Confocal/métodos , Coagulação Sanguínea/efeitos dos fármacos , Feminino , Humanos , Masculino
3.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121008

RESUMO

Background: Ulcerative colitis (UC) is characterized by altered chromogranin-A (CHGA), alternatively activated macrophages (M2) and intestinal epithelial cells (IECs). We previously demonstrated that CHGA is implicated in colitis progression by regulating the macrophages. Here, we investigated the interplay between CHGA, M2, tight junctions (TJ) and IECs in an inflammatory environment. Methods: Correlations between CHGA mRNA expression of and TJ proteins mRNA expressions of (Occludin [OCLN], zonula occludens-1 [ZO1], Claudin-1 [CLDN1]), epithelial associated cytokines (interleukin [IL]-8, IL-18), and collagen (COL1A2) were determined in human colonic mucosal biopsies isolated from active UC and healthy patients. Acute UC-like colitis (5% dextran sulphate sodium [DSS], five days) was induced in Chga-C57BL/6-deficient (Chga-/-) and wild type (Chga+/+) mice. Col1a2 TJ proteins, Il-18 mRNA expression and collagen deposition were determined in whole colonic sections. Naïve Chga-/- and Chga+/+ peritoneal macrophages were isolated and exposed six hours to IL-4/IL-13 (20 ng/mL) to promote M2 and generate M2-conditioned supernatant. Caco-2 epithelial cells were cultured in the presence of Chga-/- and Chga+/+ non- or M2-conditioned supernatant for 24 h then exposed to 5% DSS for 24 h, and their functional properties were assessed. Results: In humans, CHGA mRNA correlated positively with COL1A2, IL-8 and IL-18, and negatively with TJ proteins mRNA markers. In the experimental model, the deletion of Chga reduced IL-18 mRNA and its release, COL1A2 mRNA and colonic collagen deposition, and maintained colonic TJ proteins. Chga-/- M2-conditioned supernatant protected caco-2 cells from DSS and oxidative stress injuries by improving caco-2 cells functions (proliferation, viability, wound healing) and by decreasing the release of IL-8 and IL-18 and by maintaining the levels of TJ proteins, and when compared with Chga+/+ M2-conditioned supernatant. Conclusions: CHGA contributes to the development of intestinal inflammation through the regulation of M2 and epithelial cells. Targeting CHGA may lead to novel biomarkers and therapeutic strategies in UC.


Assuntos
Cromogranina A/genética , Colite Ulcerativa/imunologia , Citocinas/genética , Macrófagos/imunologia , Proteínas de Junções Íntimas/genética , Animais , Células CACO-2 , Estudos de Casos e Controles , Células Cultivadas , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Interleucina-18/genética , Interleucina-8/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
4.
Thromb Haemost ; 120(7): 1116-1127, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32572866

RESUMO

Delayed identification of coagulopathy and bleeding increases the risk of organ failure and death in hospitalized patients. Timely and accurate identification of impaired coagulation at the point-of-care can proactively identify bleeding risk and guide resuscitation, resulting in improved outcomes for patients. We test the accuracy of a novel optical coagulation sensing approach, termed iCoagLab, for comprehensive whole blood coagulation profiling and investigate its diagnostic accuracy in identifying patients at elevated bleeding risk. Whole blood samples from patients (N = 270) undergoing conventional coagulation testing were measured using the iCoagLab device. Recalcified and kaolin-activated blood samples were loaded in disposable cartridges and time-varying intensity fluctuation of laser speckle patterns were measured to quantify the clot viscoelastic modulus during coagulation. Coagulation parameters including the reaction time (R), clot progression time (K), clot progression rate (α), and maximum clot strength (MA) were derived from clot viscoelasticity traces and compared with mechanical thromboelastography (TEG). In all patients, a good correlation between iCoagLab- and TEG-derived parameters was observed (p < 0.001). Multivariate analysis showed that iCoagLab-derived parameters identified bleeding risk with sensitivity (94%) identical to, and diagnostic accuracy (89%) higher than TEG (87%). The diagnostic specificity of iCoagLab (77%) was significantly higher than TEG (69%). By rapidly and comprehensively permitting blood coagulation profiling the iCoagLab innovation is likely to advance the capability to identify patients with elevated risk for bleeding, with the ultimate goal of preventing life-threatening hemorrhage.


Assuntos
Testes de Coagulação Sanguínea , Coagulação Sanguínea , Hemorragia/diagnóstico , Testes Imediatos , Tromboelastografia , Testes de Coagulação Sanguínea/instrumentação , Hemorragia/sangue , Hemorragia/etiologia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo
5.
Sci Rep ; 7(1): 9169, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835607

RESUMO

Prothrombin time (PT) and the associated international normalized ratio (INR) are routinely tested to assess the risk of bleeding or thrombosis and to monitor response to anticoagulant therapy in patients. To measure PT/INR, conventional coagulation testing (CCT) is performed, which is time-consuming and requires the separation of cellular components from whole blood. Here, we report on a portable and battery-operated optical sensor that can rapidly quantify PT/INR within seconds by measuring alterations in the viscoelastic properties of a drop of whole blood following activation of coagulation with thromboplastin. In this study, PT/INR values were measured in 60 patients using the optical sensor and compared with the corresponding CCT values. Our results report a close correlation and high concordance between PT/INR measured using the two approaches. These findings confirm the accuracy of our optical sensing approach for rapid PT/INR testing in whole blood and highlight the potential for use at the point-of-care or for patient self-testing.


Assuntos
Técnicas Biossensoriais , Coagulação Sanguínea , Hemorreologia , Coeficiente Internacional Normatizado , Lasers , Tempo de Protrombina , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Testes de Coagulação Sanguínea/instrumentação , Testes de Coagulação Sanguínea/métodos , Humanos , Coeficiente Internacional Normatizado/instrumentação , Coeficiente Internacional Normatizado/métodos , Tempo de Protrombina/instrumentação , Tempo de Protrombina/métodos , Reprodutibilidade dos Testes
6.
PLoS One ; 12(8): e0182491, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771571

RESUMO

Anticoagulant overdose is associated with major bleeding complications. Rapid coagulation sensing may ensure safe and accurate anticoagulant dosing and reduce bleeding risk. Here, we report the novel use of Laser Speckle Rheology (LSR) for measuring anticoagulation and haemodilution status in whole blood. In the LSR approach, blood from 12 patients and 4 swine was placed in disposable cartridges and time-varying intensity fluctuations of laser speckle patterns were measured to quantify the viscoelastic modulus during clotting. Coagulation parameters, mainly clotting time, clot progression rate (α-angle) and maximum clot stiffness (MA) were derived from the clot viscoelasticity trace and compared with standard Thromboelastography (TEG). To demonstrate the capability for anticoagulation sensing in patients, blood samples from 12 patients treated with warfarin anticoagulant were analyzed. LSR clotting time correlated with prothrombin and activated partial thromboplastin time (r = 0.57-0.77, p<0.04) and all LSR parameters demonstrated good correlation with TEG (r = 0.61-0.87, p<0.04). To further evaluate the dose-dependent sensitivity of LSR parameters, swine blood was spiked with varying concentrations of heparin, argatroban and rivaroxaban or serially diluted with saline. We observed that anticoagulant treatments prolonged LSR clotting time in a dose-dependent manner that correlated closely with TEG (r = 0.99, p<0.01). LSR angle was unaltered by anticoagulation whereas TEG angle presented dose-dependent diminution likely linked to the mechanical manipulation of the clot. In both LSR and TEG, MA was largely unaffected by anticoagulation, and LSR presented a higher sensitivity to increased haemodilution in comparison to TEG (p<0.01). Our results establish that LSR rapidly and accurately measures the response of various anticoagulants, opening the opportunity for routine anticoagulation monitoring at the point-of-care or for patient self-testing.


Assuntos
Anticoagulantes/administração & dosagem , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Testes de Coagulação Sanguínea/métodos , Varfarina/administração & dosagem , Animais , Anticoagulantes/farmacologia , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/veterinária , Testes de Coagulação Sanguínea/veterinária , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Tempo de Tromboplastina Parcial , Sistemas Automatizados de Assistência Junto ao Leito , Tempo de Protrombina , Reologia , Suínos , Varfarina/farmacologia
7.
Biomed Opt Express ; 8(7): 3502-3515, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717586

RESUMO

Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g2(t), from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.

8.
Biomed Opt Express ; 8(1): 137-150, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28101407

RESUMO

A number of disease conditions in luminal organs are associated with alterations in tissue mechanical properties. Here, we report a new omni-directional viewing Laser Speckle Rheology (LSR) catheter for mapping the mechanical properties of luminal organs without the need for rotational motion. The LSR catheter incorporates multiple illumination fibers, an optical fiber bundle and a multi-faceted mirror to permit omni-directional viewing of the luminal wall. By retracting the catheter using a motor-drive assembly, cylindrical maps of tissue mechanical properties are reconstructed. Evaluation conducted in a test phantom with circumferentially-varying mechanical properties demonstrates the capability of the LSR catheter for the accurate mechanical assessment of luminal organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA