Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045332

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.

2.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986914

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.

3.
J Neurol Sci ; 454: 120828, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865002

RESUMO

Ataxin-3 (Atxn3) is a deubiquitinase with a polyglutamine (polyQ) repeat tract whose abnormal expansion causes the neurodegenerative disease, Spinocerebellar Ataxia Type 3 (SCA3; also known as Machado-Joseph Disease). The ubiquitin chain cleavage properties of Atxn3 are enhanced when the enzyme is itself ubiquitinated at lysine (K) at position 117: in vitro, K117-ubiqutinated Atxn3 cleaves poly-ubiquitin markedly more rapidly compared to its unmodified counterpart. How polyQ expansion causes SCA3 remains unclear. To gather insights into the biology of disease of SCA3, here we posited the question: is K117 important for toxicity caused by pathogenic Atxn3? To answer this question, we generated transgenic Drosophila lines that express full-length, human, pathogenic Atxn3 with 80 polyQ with an intact or mutated K117. We found that mutating K117 mildly enhances the toxicity and aggregation of pathogenic Atxn3. An additional transgenic line that expresses Atxn3 without any K residues confirms increased aggregation of pathogenic Atxn3 whose ubiquitination is perturbed. These findings suggest that Atxn3 ubiquitination is a regulatory step of SCA3, in part by modulating its aggregation.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Animais , Humanos , Doença de Machado-Joseph/genética , Ataxina-3/genética , Drosophila , Lisina/genética , Ubiquitina
4.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398109

RESUMO

Ataxin-3 (Atxn3) is a deubiquitinase with a polyglutamine (polyQ) repeat tract whose abnormal expansion causes the neurodegenerative disease, Spinocerebellar Ataxia Type 3 (SCA3; also known as Machado-Joseph Disease). The ubiquitin chain cleavage properties of Atxn3 are enhanced when it is ubiquitinated at lysine (K) at position 117. K117-ubiqutinated Atxn3 cleaves poly-ubiquitin more rapidly in vitro compared to its unmodified counterpart and this residue is also important for Atxn3 roles in cell culture and in Drosophila melanogaster . How polyQ expansion causes SCA3 remains unclear. To gather insight into the biology of disease of SCA3, here we posited the question: is K117 important for toxicity caused by Atxn3? We generated transgenic Drosophila lines that express full-length, human, pathogenic Atxn3 with 80 polyQ with an intact or mutated K117. We found that K117 mutation mildly enhances the toxicity and aggregation of pathogenic Atxn3 in Drosophila . An additional transgenic line that expresses Atxn3 without any K residues confirms increased aggregation of pathogenic Atxn3 whose ubiquitination is perturbed. These findings suggest Atxn3 ubiquitination as a regulatory step of SCA3, in part by modulating its aggregation.

5.
Front Mol Neurosci ; 15: 974167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187346

RESUMO

The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation-the abnormal elongation of a polyQ repeat in nine different proteins-which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.

6.
Cells ; 11(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406787

RESUMO

RNA toxicity contributes to diseases caused by anomalous nucleotide repeat expansions. Recent work demonstrated RNA-based toxicity from repeat-associated, non-AUG-initiated translation (RAN translation). RAN translation occurs around long nucleotide repeats that form hairpin loops, allowing for translation initiation in the absence of a start codon that results in potentially toxic, poly-amino acid repeat-containing proteins. Discovered in Spinocerebellar Ataxia Type (SCA) 8, RAN translation has been documented in several repeat-expansion diseases, including in the CAG repeat-dependent polyglutamine (polyQ) disorders. The ATXN3 gene, which causes SCA3, also known as Machado-Joseph Disease (MJD), contains a CAG repeat that is expanded in disease. ATXN3 mRNA possesses features linked to RAN translation. In this paper, we examined the potential contribution of RAN translation to SCA3/MJD in Drosophila by using isogenic lines that contain homomeric or interrupted CAG repeats. We did not observe unconventional translation in fly neurons or glia. However, our investigations indicate differential toxicity from ATXN3 protein-encoding mRNA that contains pure versus interrupted CAG repeats. Additional work suggests that this difference may be due in part to toxicity from homomeric CAG mRNA. We conclude that Drosophila is not suitable to model RAN translation for SCA3/MJD, but offers clues into the potential pathogenesis stemming from CAG repeat-containing mRNA in this disorder.


Assuntos
Doença de Machado-Joseph , Animais , Drosophila/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Nucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
7.
Front Neurosci ; 16: 1112688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733922

RESUMO

Spinocerebellar Ataxia Type 3 (SCA3) is a member of the family of polyglutamine (polyQ) diseases that are caused by anomalous CAG triplet repeat expansions in several genes. SCA3 results from abnormal polyQ expansion in the deubiquitinase (DUB), ataxin-3 (Atxn3). To understand the role of the different domains of mutant Atxn3 on its pathogenicity, with the hope that they can be explored for therapeutic interventions, we have systematically studied their individual and collective effects on its toxicity. One such domain is ubiquitin-binding site 1 (UbS1) on the catalytic domain of Atxn3; UbS1 is necessary for the enzymatic activity of Atxn3. Here, we investigated the importance of UbS1 on the toxicity of pathogenic Atxn3. We generated transgenic Drosophila melanogaster lines that express polyQ-expanded Atxn3 with and without a functional UbS1. We found that mutating UbS1 markedly exacerbates the toxicity of pathogenic Atxn3. Additional studies indicated that UbS1 regulates the toxicity of Atxn3 not by affecting its aggregation or sub-cellular localization, but by impacting its role in ubiquitin processing. Our findings provide additional insights into the role of Atxn3's domains in the pathogenicity of SCA3.

8.
Neurobiol Dis ; 160: 105516, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563642

RESUMO

Of the family of polyglutamine (polyQ) neurodegenerative diseases, Spinocerebellar Ataxia Type 3 (SCA3) is the most common. Like other polyQ diseases, SCA3 stems from abnormal expansions in the CAG triplet repeat of its disease gene resulting in elongated polyQ repeats within its protein, ataxin-3. Various ataxin-3 protein domains contribute to its toxicity, including the valosin-containing protein (VCP)-binding motif (VBM). We previously reported that VCP, a homo-hexameric protein, enhances pathogenic ataxin-3 aggregation and exacerbates its toxicity. These findings led us to explore the impact of targeting the SCA3 protein by utilizing a decoy protein comprising the N-terminus of VCP (N-VCP) that binds ataxin-3's VBM. The notion was that N-VCP would reduce binding of ataxin-3 to VCP, decreasing its aggregation and toxicity. We found that expression of N-VCP in Drosophila melanogaster models of SCA3 ameliorated various phenotypes, coincident with reduced ataxin-3 aggregation. This protective effect was specific to pathogenic ataxin-3 and depended on its VBM. Increasing the amount of N-VCP resulted in further phenotype improvement. Our work highlights the protective potential of targeting the VCP-ataxin-3 interaction in SCA3, a key finding in the search for therapeutic opportunities for this incurable disorder.


Assuntos
Ataxina-3/metabolismo , Doença de Machado-Joseph/metabolismo , Proteína com Valosina/metabolismo , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Drosophila melanogaster , Doença de Machado-Joseph/genética , Fenótipo , Ligação Proteica
9.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955441

RESUMO

Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3's non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.


Assuntos
Ataxina-3 , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Peptídeos , Ubiquitina/metabolismo , Motivos de Aminoácidos , Animais , Ataxina-3/química , Ataxina-3/genética , Ataxina-3/metabolismo , Ataxina-3/toxicidade , Drosophila , Proteínas de Drosophila/química , Proteínas de Choque Térmico HSC70/química , Humanos , Larva/metabolismo , Doença de Machado-Joseph/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/toxicidade , Ubiquitina/química
10.
J Neurosci Res ; 98(10): 2096-2108, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32643791

RESUMO

Ataxin-3 is a deubiquitinase and polyglutamine disease protein whose cellular properties and functions are not entirely understood. Mutations in ataxin-3 cause spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder that is a member of the polyglutamine family of diseases. Two major isoforms arise from alternative splicing of ATXN3 and are differently toxic in vivo as a result of faster proteasomal degradation of one isoform compared to the other. The isoforms vary only at their C-termini, suggesting that the hydrophobic C-terminus of the more quickly degraded form of ataxin-3 (here referred to as isoform 2) functions as a degron-that is, a peptide sequence that expedites the degradation of its host protein. We explored this notion in this study and present evidence that: (a) the C-terminus of ataxin-3 isoform 2 signals its degradation in a proteasome-dependent manner, (b) this effect from the C-terminus of isoform 2 does not require the ubiquitination of ataxin-3, and (c) the isolated C-terminus of isoform 2 can enhance the degradation of an unrelated protein. According to our data, the C-terminus of ataxin-3 isoform 2 is a degron, increasing overall understanding of the cellular properties of the SCA3 protein.


Assuntos
Ataxina-3/genética , Simulação por Computador , Peptídeos/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Ataxina-3/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitinação/fisiologia
11.
Environ Pollut ; 266(Pt 2): 115090, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32693326

RESUMO

Microplastics (MPs) are a ubiquitous pollutant detected not only in marine and freshwater bodies, but also in tap and bottled water worldwide. While MPs have been extensively studied, the toxicity of their smaller counterpart, nanoplastics (NPs), is not well documented. Despite likely large-scale human and animal exposure to NPs, the associated health risks remain unclear, especially during early developmental stages. To address this, we investigated the health impacts of exposures to both 50 and 200 nm polystyrene NPs in larval zebrafish. From 6 to 120 h post-fertilization (hpf), developing zebrafish were exposed to a range of fluorescent NPs (10-10,000 parts per billion). Dose-dependent increases in accumulation were identified in exposed larval fish, potentially coinciding with an altered behavioral response as evidenced through swimming hyperactivity. Notably, exposures did not impact mortality, hatching rate, or deformities; however, transcriptomic analysis suggests neurodegeneration and motor dysfunction at both high and low concentrations. Furthermore, results of this study suggest that NPs can accumulate in the tissues of larval zebrafish, alter their transcriptome, and affect behavior and physiology, potentially decreasing organismal fitness in contaminated ecosystems. The uniquely broad scale of this study during a critical window of development provides crucial multidimensional characterization of NP impacts on human and animal health.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra/genética , Animais , Ecossistema , Embrião não Mamífero , Humanos , Larva , Microplásticos , Plásticos , Transcriptoma
12.
Neurobiol Dis ; 132: 104535, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31310802

RESUMO

The most commonly inherited dominant ataxia, Spinocerebellar Ataxia Type 3 (SCA3), is caused by a CAG repeat expansion that encodes an abnormally long polyglutamine (polyQ) repeat in the disease protein ataxin-3, a deubiquitinase. Two major full-length isoforms of ataxin-3 exist, both of which contain the same N-terminal portion and polyQ repeat, but differ in their C-termini; one (denoted here as isoform 1) contains a motif that binds ataxin-3's substrate, ubiquitin, whereas the other (denoted here as isoform 2) has a hydrophobic tail. Most SCA3 studies have focused on isoform 1, the predominant version in mammalian brain, yet both isoforms are present in brain and a better understanding of their relative pathogenicity in vivo is needed. We took advantage of the fruit fly, Drosophila melanogaster to model SCA3 and to examine the toxicity of each ataxin-3 isoform. Our assays reveal isoform 1 to be markedly more toxic than isoform 2 in all fly tissues. Reduced toxicity from isoform 2 is due to much lower protein levels as a result of its expedited degradation. Additional studies indicate that isoform 1 is more aggregation-prone than isoform 2 and that the C-terminus of isoform 2 is critical for its enhanced proteasomal degradation. According to our results, although both full-length, pathogenic ataxin-3 isoforms are toxic, isoform 1 is likely the primary contributor to SCA3 due to its presence at higher levels. Isoform 2, as a result of rapid degradation that is dictated by its tail, is unlikely to be a key player in this disease. Our findings provide new insight into the biology of this ataxia and the cellular processing of the underlying disease protein.


Assuntos
Ataxina-3/genética , Ataxina-3/toxicidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/toxicidade , Doença de Machado-Joseph/genética , Proteínas Repressoras/genética , Proteínas Repressoras/toxicidade , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Doença de Machado-Joseph/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/toxicidade
13.
Hum Mol Genet ; 26(8): 1419-1431, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158474

RESUMO

Polyglutamine (polyQ) repeat expansion in the deubiquitinase ataxin-3 causes neurodegeneration in Spinocerebellar Ataxia Type 3 (SCA3), one of nine inherited, incurable diseases caused by similar mutations. Ataxin-3's degradation is inhibited by its binding to the proteasome shuttle Rad23 through ubiquitin-binding site 2 (UbS2). Disrupting this interaction decreases levels of ataxin-3. Since reducing levels of polyQ proteins can decrease their toxicity, we tested whether genetically modulating the ataxin-3-Rad23 interaction regulates its toxicity in Drosophila. We found that exogenous Rad23 increases the toxicity of pathogenic ataxin-3, coincident with increased levels of the disease protein. Conversely, reducing Rad23 levels alleviates toxicity in this SCA3 model. Unexpectedly, pathogenic ataxin-3 with a mutated Rad23-binding site at UbS2, despite being present at markedly lower levels, proved to be more pathogenic than a disease-causing counterpart with intact UbS2. Additional studies established that the increased toxicity upon mutating UbS2 stems from disrupting the autoprotective role that pathogenic ataxin-3 has against itself, which depends on the co-chaperone, DnaJ-1. Our data reveal a previously unrecognized balance between pathogenic and potentially therapeutic properties of the ataxin-3-Rad23 interaction; they highlight this interaction as critical for the toxicity of the SCA3 protein, and emphasize the importance of considering protein context when pursuing suppressive avenues.


Assuntos
Ataxina-3/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Doença de Machado-Joseph/genética , Degeneração Neural/genética , Proteínas Repressoras/genética , Animais , Ataxina-3/metabolismo , Sítios de Ligação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Chaperonas Moleculares/genética , Degeneração Neural/patologia , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Ubiquitina/genética
14.
Biol Open ; 5(12): 1770-1775, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979829

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ) repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes degeneration in mice. We recently described the first Drosophila models of SCA6 that express α1ACT with a normal (11Q) or hyper-expanded (70Q) polyQ. Here, we report additional α1ACT transgenic flies, which express full-length α1ACT with a 33Q repeat. We show that α1ACT33Q is toxic in Drosophila, but less so than the 70Q version. When expressed everywhere, α1ACT33Q-expressing adults die earlier than flies expressing the normal allele. α1ACT33Q causes retinal degeneration and leads to aggregated species in an age-dependent manner, but at a slower pace than the 70Q counterpart. According to western blots, α1ACT33Q localizes less readily in the nucleus than α1ACT70Q, providing clues into the importance of polyQ tract length on α1ACT localization and its site of toxicity. We expect that these new lines will be highly valuable for future work on SCA6.

15.
J Biol Chem ; 291(17): 9161-72, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26917723

RESUMO

Ubiquitination is a post-translational modification that regulates most cellular pathways and processes, including degradation of proteins by the proteasome. Substrate ubiquitination is controlled at various stages, including through its reversal by deubiquitinases (DUBs). A critical outcome of this process is the recycling of monoubiquitin. One DUB whose function has been proposed to include monoubiquitin recycling is USP5. Here, we investigated whether Drosophila USP5 is important for maintaining monoubiquitin in vivo We found that the fruit fly orthologue of USP5 has catalytic preferences similar to its human counterpart and that this DUB is necessary during fly development. Our biochemical and genetic experiments indicate that reduction of USP5 does not lead to monoubiquitin depletion in developing flies. Also, introduction of exogenous ubiquitin does not suppress developmental lethality caused by loss of endogenous USP5. Our work indicates that a primary physiological role of USP5 is not to recycle monoubiquitin for reutilization, but that it may involve disassembly of conjugated ubiquitin to maintain proteasome function.


Assuntos
Proteínas de Drosophila/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética , Proteases Específicas de Ubiquitina/genética
16.
Neurobiol Dis ; 82: 12-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26007638

RESUMO

Ataxin-3 is a deubiquitinase and polyglutamine (polyQ) disease protein with a protective role in Drosophila melanogaster models of neurodegeneration. In the fruit fly, wild-type ataxin-3 suppresses toxicity from several polyQ disease proteins, including a pathogenic version of itself that causes spinocerebellar ataxia type 3 and pathogenic huntingtin, which causes Huntington's disease. The molecular partners of ataxin-3 in this protective function are unclear. Here, we report that ataxin-3 requires its direct interaction with the ubiquitin-binding and proteasome-associated protein, Rad23 (known as hHR23A/B in mammals) in order to suppress toxicity from polyQ species in Drosophila. According to additional studies, ataxin-3 does not rely on autophagy or the proteasome to suppress polyQ-dependent toxicity in fly eyes. Instead this deubiquitinase, through its interaction with Rad23, leads to increased protein levels of the co-chaperone DnaJ-1 and depends on it to protect against degeneration. Through DnaJ-1, our data connect ataxin-3 and Rad23 to protective processes involved with protein folding rather than increased turnover of toxic polyQ species.


Assuntos
Ataxina-3/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroproteção/fisiologia , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Autofagia/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Choque Térmico HSP40/genética , Doenças Neurodegenerativas/genética , Peptídeos , Dobramento de Proteína
17.
Hum Mol Genet ; 24(15): 4385-96, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25954029

RESUMO

Spinocerebellar ataxia type 6 (SCA6) belongs to the family of CAG/polyglutamine (polyQ)-dependent neurodegenerative disorders. SCA6 is caused by abnormal expansion in a CAG trinucleotide repeat within exon 47 of CACNA1A, a bicistronic gene that encodes α1A, a P/Q-type calcium channel subunit and a C-terminal protein, termed α1ACT. Expansion of the CAG/polyQ region of CACNA1A occurs within α1ACT and leads to ataxia. There are few animal models of SCA6. Here, we describe the generation and characterization of the first Drosophila melanogaster models of SCA6, which express the entire human α1ACT protein with a normal or expanded polyQ. The polyQ-expanded version of α1ACT recapitulates the progressively degenerative nature of SCA6 when expressed in various fly tissues and the presence of densely staining aggregates. Additional studies identify the co-chaperone DnaJ-1 as a potential therapeutic target for SCA6. Expression of DnaJ-1 potently suppresses α1ACT-dependent degeneration and lethality, concomitant with decreased aggregation and reduced nuclear localization of the pathogenic protein. Mutating the nuclear importer karyopherin α3 also leads to reduced toxicity from pathogenic α1ACT. Little is known about the steps leading to degeneration in SCA6 and the means to protect neurons in this disease are lacking. Invertebrate animal models of SCA6 can expand our understanding of molecular sequelae related to degeneration in this disorder and lead to the rapid identification of cellular components that can be targeted to treat it.


Assuntos
Canais de Cálcio/genética , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP40/genética , Ataxias Espinocerebelares/genética , alfa Carioferinas/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/biossíntese , Humanos , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/patologia , Ataxias Espinocerebelares/patologia , Expansão das Repetições de Trinucleotídeos/genética , alfa Carioferinas/biossíntese
18.
Front Mol Neurosci ; 7: 72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191222

RESUMO

The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the "where, when, and why" of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system.

19.
Nat Commun ; 5: 4638, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144244

RESUMO

Polyglutamine repeat expansion in ataxin-3 causes neurodegeneration in the most common dominant ataxia, spinocerebellar ataxia type 3 (SCA3). Since reducing levels of disease proteins improves pathology in animals, we investigated how ataxin-3 is degraded. Here we show that, unlike most proteins, ataxin-3 turnover does not require its ubiquitination, but is regulated by ubiquitin-binding site 2 (UbS2) on its N terminus. Mutating UbS2 decreases ataxin-3 protein levels in cultured mammalian cells and in Drosophila melanogaster by increasing its proteasomal turnover. Ataxin-3 interacts with the proteasome-associated proteins Rad23A/B through UbS2. Knockdown of Rad23 in cultured cells and in Drosophila results in lower levels of ataxin-3 protein. Importantly, reducing Rad23 suppresses ataxin-3-dependent degeneration in flies. We present a mechanism for ubiquitination-independent degradation that is impeded by protein interactions with proteasome-associated factors. We conclude that UbS2 is a potential target through which to enhance ataxin-3 degradation for SCA3 therapy.


Assuntos
Ataxina-3/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Sítios de Ligação , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/genética , Ubiquitinação
20.
J Neurosci Res ; 92(9): 1100-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24798551

RESUMO

Age-related neurodegeneration has been studied extensively through the use of model organisms, including the genetically versatile Drosophila melanogaster. Various neurotoxic proteins have been expressed in fly eyes to approximate degeneration occurring in humans, and much has been learned from this heterologous system. Although Drosophila expedites scientific research through rapid generational times and relative inexpensiveness, one factor that can hinder analyses is the examination of milder forms of degeneration caused by some toxic proteins in fly eyes. Whereas several disease proteins cause massive degeneration that is easily observed by examining the external structure of the fly eye, others cause mild degeneration that is difficult to observe externally and requires laborious histological preparation to assess and monitor. Here, we describe a sensitive fluorescence-based method to observe, monitor, and quantify mild Drosophila eye degeneration caused by various proteins, including the polyglutamine disease proteins ataxin-3 (spinocerebellar ataxia type 3) and huntingtin (Huntington's disease), mutant α-synuclein (Parkinson's disease), and Aß42 (Alzheimer's disease). We show that membrane-targeted green fluorescent protein reports degeneration robustly and quantitatively. This simple yet powerful technique, which is amenable to large-scale screens, can help accelerate studies to understand age-related degeneration and to find factors that suppress it for therapeutic purposes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Peptídeos beta-Amiloides/genética , Animais , Ataxina-3 , Antígenos CD8/genética , Antígenos CD8/metabolismo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Fluorescência Verde/genética , Humanos , Proteína Huntingtina , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fragmentos de Peptídeos/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA