Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(5): 329-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461105

RESUMO

Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of ß-1,4-glucosidic linkages in cellulose and ß-glucan structures that contain ß-1,3- and ß-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus furiosus , Celulase/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Glicosilação , Celulose/metabolismo , Estabilidade Enzimática
2.
DNA Res ; 18(6): 423-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900213

RESUMO

The term 'sake yeast' is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Inversão Cromossômica , Cromossomos Fúngicos , Genes Fúngicos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Saccharomyces cerevisiae/classificação , Análise de Sequência de DNA
3.
Biosci Biotechnol Biochem ; 69(1): 206-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15665487

RESUMO

We constructed a protein expression vector with an improved enoA promoter that harbored 12 tandem repeats of the cis-acting element (region III) of Aspergillus oryzae. The improved promoter yielded reporter beta-glucuronidase (GUS) activity approximately 30-fold of the original promoter. Northern blot analysis confirmed that GUS expression was increased at the transcriptional level. The transformant harboring seven copies of the novel vector showed more than 100,000 U/mg GUS protein, which was approximately 30% of all the cell-free soluble proteins.


Assuntos
Aspergillus oryzae/genética , Fosfopiruvato Hidratase/genética , Aspergillus oryzae/enzimologia , Regulação Fúngica da Expressão Gênica , Genes Reporter , Vetores Genéticos , Glucuronidase/metabolismo , Fosfopiruvato Hidratase/metabolismo , Regiões Promotoras Genéticas , Sequências de Repetição em Tandem
4.
Appl Microbiol Biotechnol ; 66(5): 520-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15503009

RESUMO

The lactonase gene of Fusarium oxysporum was expressed in Aspergillus oryzae for optical resolution of DL-pantoyl lactone. When the chromosomal gene encoding the full-length form of the lactonase, which has its own NH2-terminal signal peptide, was introduced in the host cells, the resulting transformant produced an enzyme of 46,600 Da, which corresponded to the wild-type enzyme. In contrast, A. oryzae transformed with the cDNA coding the mature enzyme produced a protein of 41,300 Da. Deglycosylation analysis with an endoglycosidase revealed that the difference in molecular mass arose from the different sugar contents of the recombinant enzymes. The mycelia of the transformant were used as a catalyst for asymmetric hydrolysis of DL-pantoyl lactone. The initial velocity of the asymmetric hydrolysis reaction catalyzed by the transformant was estimated to be 30 times higher than that by F. oxysporum. When the mycelia of the transformant were incubated with a 20% DL-pantoyl lactone solution for 4 h, 49.9% of the racemic mixture was converted to D-pantoic acid (>95% ee).


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Fusarium/genética , Lactonas/metabolismo , Sequência de Aminoácidos , Aspergillus oryzae/genética , Fusarium/enzimologia , Expressão Gênica , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
5.
Biosci Biotechnol Biochem ; 67(4): 765-71, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12784616

RESUMO

We isolated mutants of S. cerevisiae in which expression of the JEN1 gene encoding a pyruvate transporter was insensitive to glucose repression. The isolated mutant GDR19 expressed JEN1 and absorbed pyruvate in the presence of glucose. In a DNA microarray analysis, GDR19 highly expressed many more genes, including JEN1, in the presence of glucose compared with the parental strain B29. Some of these genes are under the control of the transcription factor Mig1p and are normally repressed in the presence of glucose. The concentrations of organic acids in sake made with GDR19 were different from those in sake made with B29. Changes in the pyruvate concentration in the sake mash made with GDR19 were not very different from those in sake mash made with B29, and both GDR19 and B29 expressed JEN1 during fermentation. When the ethanol concentration was over 2%, JEN1 expression in B29 was similar in the presence and absence of glucose. The expression of JEN1 in sake mash in spite of the presence of glucose appeared to be caused by the coexistence of ethanol.


Assuntos
Genes Fúngicos/genética , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Simportadores/genética , Desoxiglucose/farmacologia , Etanol/farmacologia , Manipulação de Alimentos , Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA