Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(3): 654-667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678594

RESUMO

The evolutionary transitions of mating systems between outcrossing and self-fertilization are often suggested to associate with the cytological and genomic changes, but the empirical reports are limited in multicellular organisms. Here we used the unicellular zygnematophycean algae, the Closterium peracerosum-strigosum-littorale (C. psl.) complex, to address whether genomic properties such as genome sizes and chromosome numbers are associated with mating system transitions between homothallism (self-fertility) and heterothallism (self-sterility). Phylogenetic analysis revealed the polyphyly of homothallic strains, suggesting multiple transitions between homothallism and heterothallism in the C. psl. complex. Flow cytometry analysis identified a more than 2-fold genome size variation, ranging from 0.53 to 1.42 Gbp, which was positively correlated with chromosome number variation between strains. Although we did not find consistent trends in genome size change and mating system transitions, the mean chromosome sizes tend to be smaller in homothallic strains than in their relative heterothallic strains. This result suggests that homothallic strains possibly have more fragmented chromosomes, which is consistent with the argument that self-fertilizing populations may tolerate more chromosomal rearrangements.


Assuntos
Tamanho do Genoma , Filogenia , Closterium/genética
2.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348049

RESUMO

Genome sizes are known to vary within and among closely related species, but the knowledge about genomic factors contributing to the variation and their impacts on gene functions is limited to only a small number of species. This study identified a more than 2-fold heritable genome size variation among the unicellular Zygnematophycean alga, Closterium peracerosum-strigosum-littorale (C. psl.) complex, based on short-read sequencing analysis of 22 natural strains and F1 segregation analysis. Six de novo assembled genomes revealed that genome size variation is largely attributable to genome-wide copy number variation (CNV) among strains rather than mating type-linked genomic regions or specific repeat sequences such as rDNA. Notably, about 30% of genes showed CNV even between strains that can mate with each other. Transcriptome and gene ontology analysis demonstrated that CNV is distributed nonrandomly in terms of gene functions, such that CNV was more often observed in the gene set with stage-specific expression. Furthermore, in about 30% of these genes with CNV, the expression level does not increase proportionally with the gene copy number, suggesting presence of dosage compensation, which was overrepresented in genes involved in basic biological functions, such as translation. Nonrandom patterns in gene duplications and corresponding expression changes in terms of gene functions may contribute to maintaining the high level of CNV associated with extensive genome size variation in the C. psl. complex, despite its possible detrimental effects.


Assuntos
Closterium , Closterium/genética , Tamanho do Genoma , Variações do Número de Cópias de DNA , Plantas/genética , Reprodução/genética
3.
New Phytol ; 237(5): 1636-1651, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533897

RESUMO

The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.


Assuntos
Closterium , Fatores de Transcrição/genética , Sementes , Reprodução/genética , Regulação da Expressão Gênica
4.
Evolution ; 75(11): 2984-2993, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34250602

RESUMO

Mating systems of haploid species such as fungi, algae, and bryophytes are either heterothallic (self-incompatible) with two sex phenotypes (male and female, or mating type minus and plus in isogamous species) or homothallic (self-compatible) with only a bisexual phenotype producing zygotes within a clone. The anisogamous volvocine green alga Pleodorina starrii is a haploid species previously reported to have a heterothallic mating system. Here, we found that two additional culture strains originating from the same water system of P. starrii were taxonomically identified as P. starrii and produced male and female gametes and zygotes within a clone (bisexual). Sequences of rapidly evolving plastid genome regions were identical between the bisexual and unisexual (male or female) P. starrii strains. Intercrossings between the bisexual and unisexual strains demonstrated normal thick-walled zygotes and high survivability of F1 strains. Thus, these strains belong to the same biological species. Pleodorina starrii has a new haploid mating system that is unique in having three sex phenotypes, namely, male, female, and bisexual. Genetic analyses suggested the existence of autosomal "bisexual factor" locus independent of volvocine male and female determining regions. The present findings increase our understanding of the initial evolutionary step of transition from heterothallism to homothallism.


Assuntos
Evolução Biológica , Reprodução , Feminino , Haploidia , Humanos , Masculino , Fenótipo
5.
New Phytol ; 221(1): 99-104, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992575

RESUMO

Contents Summary 99 I. Introduction 99 II. Life cycle of Closterium 100 III. Sexual reproductive processes in the heterothallic Closterium peracerosum-strigosum-littorale complex 101 IV. Homothallism in the C. psl. complex 102 V. Sexual reproduction and inheritance of mating types in Closterium ehrenbergii 102 VI. mt-determining gene of the C. psl. complex 103 VII. Future perspectives 103 Acknowledgements 103 References 103 SUMMARY: Closterium occupies a key phylogenetic position as an ancestor of land plants and is the best-characterized Charophycean alga in terms of the process of sexual reproduction. Zygospores form as a result of sexual reproduction between genetically determined mating type plus (mt+ ) and mating type minus (mt- ) cells in heterothallic strains, or between clonal cells in homothallic strains. Here we review knowledge on the intercellular communication and mating type determination for successful sexual reproduction in Closterium. Using genomic information and transgenic techniques, the genus could be a model organism to study the mechanisms and evolution of sexual reproduction in streptophytes.


Assuntos
Closterium/fisiologia , Reprodução/fisiologia , Genes de Plantas , Estágios do Ciclo de Vida
6.
J Vis Exp ; (137)2018 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-30059030

RESUMO

It is essential to establish clonal cultures of microalgae for use in studies of various topics, such as physiology, genetics, taxonomy, and microbiology. Thus, it is extremely important to develop techniques to establish clonal cultures. In this article, we demonstrate the establishment of clonal cultures of a conjugating alga. Water samples are collected from the field. Subsequently, cells are isolated using a glass capillary pipette, placed in media, and grown under conditions suitable for generating a clonal culture.


Assuntos
Microalgas/crescimento & desenvolvimento , Meios de Cultura
7.
J Plant Res ; 131(5): 735-746, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948484

RESUMO

Reproductive isolation is essential for the process of speciation. In order to understand speciation, it is necessary to compare one mating group with other phylogenetically related but reproductively isolated groups. The Closterium peracerosum-strigosum-littorale (C. psl.) complex is a unicellular isogamous zygnematophycean alga, which is believed to share a close phylogenetic relationship with the land plants. In this study, we identified a new mating group, named group G, of C. psl. complex and compared its physiological and biochemical characteristics with the mating group I-E, which was closely related to the mating group G. Zygospores are typically formed as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt-) cells in the same mating group during sexual reproduction. Crossing experiments revealed mating groups G and I-E were reproductively isolated from each other, but the release of lone protoplasts from mt- cells of mating group G was induced in the presence of mt+ cells of mating group I-E. In fact, the sex pheromone, protoplast-release-inducing protein of mating group I-E induced the release of protoplasts from mt- cells of mating group G. When mt+ and mt- cells of both mating groups I-E and G were co-cultured (multiple-choice matings), the zygospore formation of mating group G, but not that of mating group I-E, was inhibited. Based on these results, we propose a possible mechanism of reproductive isolation between the two mating groups and suggest the presence of sexual interference between mating group G and mating group I-E.


Assuntos
Closterium/fisiologia , Isolamento Reprodutivo , Células Cultivadas , Closterium/citologia , Closterium/genética , Especiação Genética , Filogenia , Protoplastos , Reprodução
8.
Sci Rep ; 7(1): 17873, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259295

RESUMO

Heterothallic strains of the Closterium peracerosum-strigosum-littorale (C. psl.) complex have two sexes, mating-type plus (mt+) and mating-type minus (mt-). Conjugation between these two sexes is regulated by two sex pheromones, protoplast-release-inducing protein (PR-IP) and PR-IP Inducer, which are produced by mt+ and mt- cells, respectively. PR-IP mediates the release of protoplasts from mt- cells during mating. In this study, we examined the mechanism of action of CpRLP1 (receptor-like protein 1), which was previously identified in a cDNA microarray analysis as one of the PR-IP-inducible genes. Using CRISPR/Cas9 technology, we generated CpRLP1 knockout mutants in mt- cells of the C. psl. complex. When the knockout mt- cells were mixed with wild-type mt+ cells, conjugation was severely reduced. Many cells released protoplasts without pairing, suggesting a loss of synchronization between the two mating partners. Furthermore, the knockout mutants were hypersensitive to PR-IP. We conclude that CpRLP1 is a negative regulator of PR-IP that regulates the timing of protoplast release in conjugating C. psl. cells. As the first report of successful gene knockout in the class Charophyceae, this study provides a basis for research aimed at understanding the ancestral roles of genes that are indispensable for the development of land plants.


Assuntos
Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas/fisiologia , Proteínas de Transporte/genética , Closterium/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reprodução/fisiologia , Atrativos Sexuais/fisiologia , Sequência de Aminoácidos , Fenômenos Biológicos/genética , Sistemas CRISPR-Cas/genética , Closterium/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Técnicas de Inativação de Genes/métodos , Protoplastos/fisiologia , Reprodução/genética , Atrativos Sexuais/genética
9.
PLoS One ; 12(6): e0180313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28665990

RESUMO

Volvox is a very interesting oogamous organism that exhibits various types of sexuality and/or sexual spheroids depending upon species or strains. However, molecular bases of such sexual reproduction characteristics have not been studied in this genus. In the model species V. carteri, an ortholog of the minus mating type-determining or minus dominance gene (MID) of isogamous Chlamydomonas reinhardtii is male-specific and determines the sperm formation. Male and female genders are genetically determined (heterothallism) in V. carteri, whereas in several other species of Volvox both male and female gametes (sperm and eggs) are formed within the same clonal culture (homothallism). To resolve the molecular basis of the evolution of Volvox species with monoecious spheroids, we here describe a MID ortholog in the homothallic species V. africanus that produces both monoecious and male spheroids within a single clonal culture. Comparison of synonymous and nonsynonymous nucleotide substitutions in MID genes between V. africanus and heterothallic volvocacean species suggests that the MID gene of V. africanus evolved under the same degree of functional constraint as those of the heterothallic species. Based on semi quantitative reverse transcription polymerase chain reaction analyses using the asexual, male and monoecious spheroids isolated from a sexually induced V. africanus culture, the MID mRNA level was significantly upregulated in the male spheroids, but suppressed in the monoecious spheroids. These results suggest that the monoecious spheroid-specific down regulation of gene expression of the MID homolog correlates with the formation of both eggs and sperm in the same spheroid in V. africanus.


Assuntos
Evolução Molecular , Genes de Plantas , Pólen , Esferoides Celulares , Volvox/genética , Southern Blotting , Óvulo Vegetal , Filogenia , Reação em Cadeia da Polimerase , Reprodução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Volvox/classificação , Volvox/fisiologia
10.
Plant Cell Physiol ; 56(7): 1456-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941232

RESUMO

Here, we cloned the CpRLK1 gene, which encodes a receptor-like protein kinase expressed during sexual reproduction, from the heterothallic Closterium peracerosum-strigosum-littorale complex, one of the closest unicellular alga to land plants. Mating-type plus (mt(+)) cells with knockdown of CpRLK1 showed reduced competence for sexual reproduction and formed an abnormally enlarged conjugation papilla after pairing with mt(-) cells. The knockdown cells were unable to release a naked gamete, which is indispensable for zygote formation. We suggest that the CpRLK1 protein is an ancient cell wall sensor that now functions to regulate osmotic pressure in the cell to allow proper gamete release.


Assuntos
Proteínas de Algas/genética , Closterium/genética , Proteínas Quinases/genética , Proteínas de Algas/classificação , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Parede Celular/genética , Parede Celular/metabolismo , Clonagem Molecular , Closterium/metabolismo , Closterium/fisiologia , DNA Complementar/química , DNA Complementar/genética , Técnicas de Silenciamento de Genes , Immunoblotting , Microscopia Confocal , Dados de Sequência Molecular , Pressão Osmótica/fisiologia , Filogenia , Plantas/genética , Plantas/metabolismo , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Reprodução/genética , Reprodução/fisiologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Imagem com Lapso de Tempo/métodos
11.
Int Rev Cell Mol Biol ; 297: 309-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22608564

RESUMO

The genus Closterium, which is the closest unicellular relative to land plants, is the best-characterized charophycean green alga with respect to the process of sexual reproduction. In two representative heterothallic species, the steps and methods of intercellular communication were fully described. Glycoproteinaceous sex pheromones involved in the progress of these processes were physiologically and biochemically characterized and the corresponding genes were cloned. These pheromones function in most steps of sexual reproduction. For elucidating the mechanisms of sexual reproduction in detail, molecular tools such as expressed sequence tag, microarray analysis, and genetic transformation systems have been established, and whole genome analyses are ongoing. Finally, sexual reproductive isolation among mating groups was characterized, and the mechanism involved in this isolation was considered with respect to sex pheromones. In homothallic Closterium, the presence of a pheromone orthologous to the heterothallic type and possible sexual differentiation were also described, through the combination of closely related heterothallic cells.


Assuntos
Closterium/fisiologia , Evolução Biológica , Técnicas Genéticas , Feromônios/metabolismo , Reprodução/genética , Reprodução/fisiologia
12.
Sex Plant Reprod ; 25(1): 1-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21858438

RESUMO

Zygospore formation in different strains of the Closterium peracerosum-strigosum-littorale complex was examined in this unicellular isogamous charophycean alga to shed light on gametic mating strains in this taxon, which is believed to share a close phylogenetic relationship with land plants. Zygospores typically form as a result of conjugation between mating-type plus (mt(+)) and mating-type minus (mt(-)) cells during sexual reproduction in the heterothallic strain, similar to Chlamydomonas. However, within clonal cells, zygospores are formed within homothallic strains, and the majority of these zygospores originate as a result of conjugation of two recently divided sister gametangial cells derived from one vegetative cell. In this study, we analyzed conjugation of homothallic cells in the presence of phylogenetically closely related heterothallic cells to characterize the reproductive function of homothallic sister gametangial cells. The relative ratio of non-sister zygospores to sister zygospores increased in the presence of heterothallic mt(+) cells, compared with that in the homothallic strain alone and in a coculture with mt(-) cells. Heterothallic cells were surface labeled with calcofluor white, permitting fusions with homothallic cells to be identified and confirming the formation of hybrid zygospores between the homothallic cells and heterothallic mt(+) cells. These results show that at least some of the homothallic gametangial cells possess heterothallic mt(-)-like characters. This finding supports speculation that division of one vegetative cell into two sister gametangial cells is a segregative process capable of producing complementary mating types.


Assuntos
Closterium/crescimento & desenvolvimento , Closterium/genética , Filogenia , Reprodução
13.
Plant Cell Physiol ; 52(9): 1676-85, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21804095

RESUMO

Although charophycean algae form a relevant monophyly with embryophytes and hence occupy a fundamental place in the development of Streptophyta, no tools for genetic transformation in these organisms have been developed. Here we present the first stable nuclear transformation system for the unicellular Zygnematales, the Closterium peracerosum-strigosum-littorale complex (C. psl complex), which is one of the most useful organisms for experimental research on charophycean algae. When a vector, pSA106, containing the dominant selectable marker ble (phleomycin-resistant) gene and a reporter cgfp (Chlamydomonas-adapted green fluorescent protein) gene was introduced into cells via particle bombardment, a total of 19 phleomycin-resistant cells were obtained in the presence of a low concentration of phleomycin. Six isogenic strains isolated using conditioned medium showed consecutive cgfp expression and long-term stability for phleomycin resistance. DNA analyses verified single or tandem/redundant integration of ~10 copies of pSA106 into the C. psl complex genome. We also constructed an overexpression vector, pSA1102, and then integrated a CpPI gene encoding minus-specific sex pheromone into pSA1102. Ectopic overexpression of CpPI and the pheromonal function were confirmed when the vector pSA1102_CpPI was introduced into mt(+) cells. The present efficient transformation system for the C. psl complex should provide not only a basis for molecular investigation of Closterium but also an insight into important processes in early development and evolution of Streptophyta.


Assuntos
Closterium/genética , Técnicas de Transferência de Genes , Transformação Genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos , Plasmídeos/genética
14.
Plant Cell Physiol ; 51(9): 1515-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656896

RESUMO

Conjugation-regulating pheromones were analyzed in homothallic Closterium for the first time. Members of the Closterium peracerosum-strigosum-littorale complex are unicellular charophycean algae in which there are two modes of zygospore formation: heterothallism and homothallism. A homothallic strain of Closterium (designation, kodama20) forms selfing zygospores via the conjugation of two sister gametangial cells derived from one vegetative cell. Conjugation-promoting and -suppressing activities, against cells at very low (1 x 10(2) cells ml(-1)) and normal (1 x 10(4) cells ml(-1)) cell density, respectively, were detected in the medium in which cells of a normal density had been cultured. Pheromone activities decreased to 20% after incubation at 60 °C for 10 min. The release and action of the pheromones was dependent on light. The culture medium was subjected to gel filtration, and both active substances had an apparent molecular mass of 17 kDa; this was similar to that previously reported for the heterothallic sex-specific pheromone protoplast-release-inducing protein (PR-IP) Inducer. cDNAs encoding the orthologs of PR-IP Inducer were isolated from the homothallic strain. Recombinant PR-IP Inducers produced by yeast cells showed conjugation-promoting activity. These results indicate that conjugation of the homothallic strain is regulated by an ortholog of a heterothallic sex-specific pheromone.


Assuntos
Closterium/fisiologia , Feromônios/genética , Sequência de Aminoácidos , Técnicas de Cultura de Células , Clonagem Molecular , Closterium/genética , Meios de Cultivo Condicionados , Dados de Sequência Molecular , Feromônios/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodução , Alinhamento de Sequência , Análise de Sequência de DNA
15.
J Phycol ; 44(5): 1197-203, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27041716

RESUMO

The Closterium peracerosum-strigosum-littorale (C. psl.) complex consists of unicellular algae and is known to be composed of several reproductively isolated mating groups of heterothallic strains. Group I-E is completely isolated from mating groups II-A and II-B, groups II-A and II-B are partially isolated from each other, and only mating-type plus (mt(+) ) cells of group II-A and mating-type minus (mt(-) ) cells of group II-B form zygotes. Based on the alignment of 1506 group I introns, significant phylogenetic relationships were observed among mating groups II-A and II-B, while mating group I-E was distant from groups II-A and II-B. Sexual cell division in both mating-type cells of group II-A was stimulated in conditioned media in which cells of group II-B had been cultured. When mt(-) cells of group II-B were stimulated in conditioned medium derived from group II-A, mt(+) cells of group II-B did not respond to the conditioned medium. Conditioned media derived from group I-E did not exhibit sexual cell division (SCD)-inducing activity against any strain except those within its own group. From the alignment of deduced amino acid sequences from orthologous protoplast-release-inducing protein (PR-IP) Inducer genes, we detected a significant similarity among groups II-A and II-B, and mating group I-E had low similarity to other mating groups. The existing degree of reproductive isolation can be partially explained by differences in molecular structures and physiological activities of sex pheromones of these heterothallic mating groups.

16.
Plant Physiol ; 141(1): 271-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16565296

RESUMO

The desmid Closterium peracerosum-strigosum-littorale complex, which is the closest unicellular sister to land plants, is the best characterized of the charophycean green algae with respect to the process of sexual reproduction. To elucidate the molecular mechanism of intercellular communication during sexual reproduction, we created a normalized cDNA library from mixed cells of the sexual and the vegetative phases and generated a cDNA microarray. In total, 3,236 expressed sequence tags, which were classified into 1,615 nonredundant groups, were generated for cDNA microarray construction. Candidate genes for key factors involved in fertilization, such as those that encode putative receptor-like protein kinase, leucine-rich-repeat receptor-like protein, and sex pheromone homologs, were up-regulated during sexual reproduction and/or by the addition of the purified sex pheromones, and the expression patterns of these genes were confirmed by quantitative real-time polymerase chain reaction analysis. This first transcriptome profile of Closterium will provide critical clues as to the mechanism and evolution of intercellular communication between the egg and sperm cells of land plants.


Assuntos
Proteínas de Algas/genética , Clorófitas/genética , Proteínas de Algas/metabolismo , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Análise por Conglomerados , Etiquetas de Sequências Expressas , Fertilização/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Feromônios/farmacologia , RNA Mensageiro/metabolismo , Regulação para Cima
17.
J Plant Res ; 119(2): 105-13, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16456621

RESUMO

Myosins comprise a large superfamily of molecular motors that generate mechanical force in ATP-dependent interactions with actin filaments. On the basis of their conserved motor domain sequences, myosins can be divided into at least 17 classes, 3 of which (VIII, XI, XIII) are found in plants. Although full sequences of myosins are available from several species of green plants, little is known about the functions of these proteins. Additionally, sequence information for algal myosin is incomplete, and little attention has been given to the molecular evolution of myosin from green plants. In the present study, the Closterium peracerosum-strigosum-littorale complex was used as a model system for investigating a unicellular basal charophycean alga. This organism has been well studied with respect to sexual reproduction between its two mating types. Three types of partial sequences belonging to class XI myosins were obtained using degenerate primers designed to amplify motor domain sequences. Real-time polymerase chain reaction analysis of the respective myosin genes during various stages of the algal life cycle showed that one of the genes was more highly expressed during sexual reproduction, and that expression was cell-cycle-dependent in vegetatively grown cells.


Assuntos
Clorófitas/genética , Miosinas/genética , Sequência de Aminoácidos , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Reprodução , Alinhamento de Sequência
18.
Plant Cell Physiol ; 46(9): 1472-6, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15970600

RESUMO

The sex pheromone protoplast release-inducing protein (PR-IP) inducer and a sexual cell division-inducing pheromone-minus (SCD-IP-minus) that mediates the sexual reproduction of the heterothallic Closterium peracerosum-strigosum-littorale (C. psl) complex were investigated in this study. Recombinant PR-IP inducer produced by yeast cells was prepared and assayed for production of PR-IP and induction of SCD. Both biological activities were observed after treating mating-type plus (mt+) cells with the recombinant pheromone. SCD was induced by exposure to a lower concentration of the same pheromone and by a shorter treatment period with the pheromone than was production of PR-IP. This indicates that the previously characterized PR-IP inducer has both PR-IP-inducing and SCD-inducing activities with mt+ cells, although the inducing mechanisms of the two pheromones differ.


Assuntos
Divisão Celular/fisiologia , Eucariotos/metabolismo , Proteínas de Plantas/fisiologia , Atrativos Sexuais/fisiologia , Eletroforese em Gel de Poliacrilamida , Eucariotos/citologia , Proteínas de Plantas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA