Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2306454120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170752

RESUMO

Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Hexoquinase , Hexoquinase/genética , Hexoquinase/metabolismo , Estudos Prospectivos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Proteínas Quinases/metabolismo , Senescência Celular/genética , Homeostase , Autofagia/genética
2.
Chem Pharm Bull (Tokyo) ; 71(8): 665-669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532537

RESUMO

The time-domain NMR technique was utilized to monitor precisely the physicochemical stability of indomethacin (IMC) nanosuspensions using T2 relaxation time (T2). We investigated whether T2 values can distinguish between agglomeration and sedimentation. Nanosuspensions of IMC were prepared using aqueous wet bead milling with polyvinylpyrrolidone as a stabilizer. Prepared nanosuspensions were divided into two fractions: one was stored in the NMR equipment for continuous T2 measurements and the other was stored in the dispersion analyzer. Measurements of both nanosuspensions were carried out, without dilution, over a period of 24 h at 10-min intervals. Transmission profiles based on multilight scattering technology showed that agglomeration predominantly occurred at 25 and 35 °C immediately after wet bead milling up to 4 h, followed by sedimentation from 4 to 24 h. Upon measuring the T2 relaxation, T2 values at both 25 and 35 °C showed a two-step change-there was a significant prolongation in T2 values immediately after preparation of nanosuspensions up to approx. 4 h and a gradual prolongation in T2 values from approx. 4 to 24 h. Considering the results of transmission profiles, these two-step T2 changes correspond to agglomeration and sedimentation. In other words, this study established that monitoring the T2 values of nanosuspensions could be used to evaluate the agglomeration and sedimentation of contained drug particles. This technique does not directly observe the nanoparticles themselves, but the water molecules. Thus, measurement of T2 relaxation is considered to be a general-purpose technique, independent of the type of drug or polymer.


Assuntos
Indometacina , Nanopartículas , Indometacina/química , Tamanho da Partícula , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Nanopartículas/química , Suspensões , Solubilidade
3.
Sci Total Environ ; 896: 165265, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37400029

RESUMO

The Angkor monuments have been registered on the World Cultural Heritage List of UNESCO, while the buildings built mostly of sandstone are suffering from serious deterioration and damage. Microorganisms are one of the leading causes for the sandstone deterioration. Identification of the mechanisms underlying the biodeterioration is of significance because it reveals the biochemical reaction involved so that effective conservation and restoration of cultural properties can be achieved. In this study, the fungal colonization and biodeterioration of sandstone in simulation experiments were examined using confocal reflection microscopy (CRM) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Aspergillus sp. strain AW1 and Paecilomyces sp. strain BY8 isolated from the deteriorated sandstone of Angkor Wat and Bayon of Angkor Thom, respectively, were inoculated and incubated with the sandstone used for construction of Angkor Wat. With CRM, we could visualize that strain AW1 tightly attached to and broke in the sandstone with extension of the hyphae. Quantitative imaging analyses showed that the sandstone surface roughness increased and the cavities formed under the fungal hyphae deepened during the incubation of strains AW1 and BY8. These highlighted that the massive growth of fungi even under the culture conditions was associated with the cavity formation of the sandstone and its expansion. Furthermore, SEM-EDS indicated the flat and Si-rich materials, presumably quartz and feldspar, were found frequently at the intact sandstone surface. But the flatness was lost during the incubation, possibly due to the detachment of the Si-rich mineral particles by the fungal deterioration. Consequently, this study proposed a biodeterioration model of the sandstone in that the hyphae of fungi elongated on the surface of the sandstone to penetrate into the soft and porous sandstone matrix, damaging the matrix and gradually destabilize the hard and Si-rich minerals, such as quartz and feldspar, to the collapse and cavities.


Assuntos
Silicatos de Alumínio , Quartzo , Compostos de Potássio , Minerais , Fungos
4.
Genes Cells ; 28(1): 68-77, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284367

RESUMO

DNA transfection is an essential technique in the life sciences. Non-viral transfection reagents are widely used for transfection in basic science. However, low transfection efficiency is a problem in some cell types. This low efficiency can be primarily attributed to the intracellular degradation of transfected DNA by p62-dependent selective autophagy, specifically by p62 phosphorylated at the S403 residue (p62-S403-P). To achieve efficient DNA transfection, we focused on a phosphorylation process that generates p62-S403-P and investigated whether inhibition of this process affects transfection efficiency. One of the kinases that phosphorylate p62 is TBK1. The TBK1 gene depletion in murine embryonic fibroblast cells by genome editing caused a significant reduction or loss of p62-S405-P (equivalent to human S403-P) and enhanced transfection efficiency, suggesting that TBK1 is a major kinase that phosphorylates p62 at S403. Therefore, TBK1 is a viable target for drug treatment to increase transfection efficiency. Transfection efficiency was enhanced when cells were treated with one of the following TBK1 inhibitors BX795, MRT67307, or amlexanox. This effect was synergistically improved when the two inhibitors were used in combination. Our results indicate that TBK1 inhibitors enhanced transfection efficiency by suppressing p62 phosphorylation.


Assuntos
Autofagia , DNA , Camundongos , Animais , Humanos , Fosforilação , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Transfecção , DNA/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
5.
J Biol Chem ; 298(9): 102342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933014

RESUMO

Ess2, also known as Dgcr14, is a transcriptional co-regulator of CD4+ T cells. Ess2 is located in a chromosomal region, the loss of which has been associated with 22q11.2 deletion syndrome (22q11DS), which causes heart defects, skeletal abnormalities, and immunodeficiency. However, the specific association of Ess2 with 22q11DS remains unclear. To elucidate the role of Ess2 in T-cell development, we generated Ess2 floxed (Ess2fl/fl) and CD4+ T cell-specific Ess2 KO (Ess2ΔCD4/ΔCD4) mice using the Cre/loxP system. Interestingly, Ess2ΔCD4/ΔCD4 mice exhibited reduced naïve T-cell numbers in the spleen, while the number of thymocytes (CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+) in the thymus remained unchanged. Furthermore, Ess2ΔCD4/ΔCD4 mice had decreased NKT cells and increased γδT cells in the thymus and spleen. A genome-wide expression analysis using RNA-seq revealed that Ess2 deletion alters the expression of many genes in CD4 single-positive thymocytes, including genes related to the immune system and Myc target genes. In addition, Ess2 enhanced the transcriptional activity of c-Myc. Some genes identified as Ess2 targets in mice show expressional correlation with ESS2 in human immune cells. Moreover, Ess2ΔCD4/ΔCD4 naïve CD4+ T cells did not maintain survival in response to IL-7. Our results suggest that Ess2 plays a critical role in post-thymic T-cell survival through the Myc and IL-7 signaling pathways.


Assuntos
Linfócitos T CD4-Positivos , Interleucina-7 , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-myc , Transcrição Gênica , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Sobrevivência Celular , Interleucina-7/metabolismo , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Timo/citologia , Timo/imunologia
6.
Genes Cells ; 26(9): 739-751, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34212463

RESUMO

Ectopic gene expression is an indispensable tool in biology and medicine, but is often limited by the low efficiency of DNA transfection. We previously reported that depletion of the autophagy receptor p62/SQSTM1 enhances DNA transfection efficiency by preventing the degradation of transfected DNA. Therefore, p62 is a potential target for drugs to increase transfection efficiency. To identify such drugs, a nonbiased high-throughput screening was applied to over 4,000 compounds from the Osaka University compound library, and their p62 dependency was evaluated. The top-scoring drugs were mostly microtubule inhibitors, such as colchicine and vinblastine, and all of them showed positive effects only in the presence of p62. To understand the p62-dependent mechanisms, the time required for p62-dependent ubiquitination, which is required for autophagosome formation, was examined using polystyrene beads that were introduced into cells as materials that mimicked transfected DNA. Microtubule inhibitors caused a delay in ubiquitination. Furthermore, the level of phosphorylated p62 at S405 was markedly decreased in the drug-treated cells. These results suggest that microtubule inhibitors inhibit p62-dependent autophagosome formation. Our findings demonstrate for the first time that microtubule inhibitors suppress p62 activation as a mechanism for increasing DNA transfection efficiency and provide solutions to increase efficiency.


Assuntos
Microtúbulos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Transfecção/métodos , Moduladores de Tubulina/farmacologia , Ubiquitinação , Animais , Células Cultivadas , Colchicina/farmacologia , Endocitose , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Vimblastina/farmacologia
7.
J Cell Sci ; 134(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33589500

RESUMO

TFEB, a basic helix-loop-helix transcription factor, is a master regulator of autophagy, lysosome biogenesis and lipid catabolism. Compared to posttranslational regulation of TFEB, the regulation of TFEB mRNA stability remains relatively uncharacterized. In this study, we identified the mRNA-binding protein THOC4 as a novel regulator of TFEB. In mammalian cells, siRNA-mediated knockdown of THOC4 decreased the level of TFEB protein to a greater extent than other bHLH transcription factors. THOC4 bound to TFEB mRNA and stabilized it after transcription by maintaining poly(A) tail length. We further found that this mode of regulation was conserved in Caenorhabditiselegans and was essential for TFEB-mediated lipid breakdown, which becomes over-represented during prolonged starvation. Taken together, our findings reveal the presence of an additional layer of TFEB regulation by THOC4 and provide novel insights into the function of TFEB in mediating autophagy and lipid metabolism.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Homeostase , Lisossomos/genética , RNA Mensageiro/genética
8.
Sci Rep ; 10(1): 17894, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110103

RESUMO

Dilated cardiomyopathy (DCM) is a fatal heart disease characterized by left ventricular dilatation and cardiac dysfunction. Recent genetic studies on DCM have identified causative mutations in over 60 genes, including RBM20, which encodes a regulator of heart-specific splicing. DCM patients with RBM20 mutations have been reported to present with more severe cardiac phenotypes, including impaired cardiac function, atrial fibrillation (AF), and ventricular arrhythmias leading to sudden cardiac death, compared to those with mutations in the other genes. An RSRSP stretch of RBM20, a hotspot of missense mutations found in patients with idiopathic DCM, functions as a crucial part of its nuclear localization signals. However, the relationship between mutations in the RSRSP stretch and cardiac phenotypes has never been assessed in an animal model. Here, we show that Rbm20 mutant mice harboring a missense mutation S637A in the RSRSP stretch, mimicking that in a DCM patient, demonstrated severe cardiac dysfunction and spontaneous AF and ventricular arrhythmias mimicking the clinical state in patients. In contrast, Rbm20 mutant mice with frame-shifting deletion demonstrated less severe phenotypes, although loss of RBM20-dependent alternative splicing was indistinguishable. RBM20S637A protein cannot be localized to the nuclear speckles, but accumulated in cytoplasmic, perinuclear granule-like structures in cardiomyocytes, which might contribute to the more severe cardiac phenotypes.


Assuntos
Fibrilação Atrial/genética , Cardiomiopatia Dilatada/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo , Animais , Fibrilação Atrial/fisiopatologia , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Masculino , Camundongos , Mutação , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/metabolismo , Sinais de Localização Nuclear/genética , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-31803139

RESUMO

The corpus luteum (CL) is an important tissue of the female reproductive process which is established through ovulation of the mature follicle. Pulsatile release of prostaglandin F2α from the uterus leads to the regression of luteal cells and restarts the estrous cycle in most non-primate species. The rapid functional regression of the CL, which coincides with decrease of progesterone production, is followed by its structural regression. Although we now have a better understanding of how the CL is triggered to undergo programmed cell death, the precise mechanisms governing CL protein degradation in a very short period of luteolysis remains unknown. In this context, activation of ubiquitin-proteasome pathway (UPP), unfolded protein response (UPR) and autophagy are potential subcellular mechanisms involved. The ubiquitin-proteasome pathway (UPP) maintains tissue homeostasis in the face of both internal and external stressors. The UPP also controls physiological processes in many gonadal cells. Emerging evidence suggests that UPP dysfunction is involved in male and female reproductive tract dysfunction. Autophagy is activated when cells are exposed to different types of stressors such as hypoxia, starvation, and oxidative stress. While emerging evidence points to an important role for the UPP and autophagy in the CL, the key underlying transcriptional mechanisms have not been well-documented. In this review, we propose how CL regression may be governed by the ubiquitin-proteasome and autophagy pathways. We will further consider potential transcription factors which may regulate these events in the CL.

10.
J Cell Physiol ; 234(2): 1080-1087, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144363

RESUMO

Imprinted genes, which are specific to mammals, play important roles in cell proliferation, differentiation, ontogeny, and other phenomena. Moreover, these genes are considered crucial in the research of mammalian evolution. In the current study, we investigated the association between the expression of paternally imprinted gene paternally expressed 1/mesoderm-specific transcript (Peg1/Mest) and the maturation of the mammary gland. Quantitative real-time polymerase chain reaction analysis of Peg1/Mest gene expression at different stages of mouse mammary gland maturation revealed that its expression increased during gestation but decreased during lactation. Immunohistochemical staining demonstrated that Peg1/Mest was expressed in mammary epithelial cells. We measured expression levels of Peg1/Mest and E-cadherin during mammary alveoli formation using immunofluorescence staining a cell model for mammary alveoli formation in a 3D culture system. We found that the onset of E-cadherin expression roughly coincided with the peak of Peg1/Mest expression. Moreover, we discovered that the formation and proliferation of alveoli were suppressed in Peg1/Mest knockdown mammary epithelial cells. These results suggest that Peg1/Mest plays a certain role in mammary alveoli formation. To clarify the role of Peg1/Mest in the lactogenic differentiation of mammary epithelial cells, we examined the lactogenic differentiation capability of Peg1/Mest-overexpressing HC11 cells. Application of a differentiation-inducing stimulus did not increase ß-casein expression in Peg1/Mest-overexpressing HC11 cells. The current study for the first time reports the involvement of an imprinted gene in mammary gland maturation.


Assuntos
Diferenciação Celular/genética , Células Epiteliais , Impressão Genômica , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Caseínas/genética , Caseínas/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Glândulas Mamárias Animais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Morfogênese , Polimorfismo de Nucleotídeo Único , Gravidez , Proteínas/metabolismo , Transdução de Sinais
11.
Commun Biol ; 1: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271905

RESUMO

Housekeeping metabolic pathways such as glycolysis are active in all cell types. In addition, many types of cells are equipped with cell-specific metabolic pathways. To properly perform their functions, housekeeping and cell-specific metabolic pathways must function cooperatively. However, the regulatory mechanisms that couple metabolic pathways remain largely unknown. Recently, we showed that the steroidogenic cell-specific nuclear receptor Ad4BP/SF-1, which regulates steroidogenic genes, also regulates housekeeping glycolytic genes. Here, we identify cholesterogenic genes as the targets of Ad4BP/SF-1. Further, we reveal that Ad4BP/SF-1 regulates Hummr, a candidate mediator of cholesterol transport from endoplasmic reticula to mitochondria. Given that cholesterol is the starting material for steroidogenesis and is synthesized from acetyl-CoA, which partly originates from glucose, our results suggest that multiple biological processes involved in synthesizing steroid hormones are governed by Ad4BP/SF-1. To our knowledge, this study provides the first example where housekeeping and cell-specific metabolism are coordinated at the transcriptional level.

12.
FEBS Open Bio ; 8(3): 470-480, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511624

RESUMO

Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time-lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62-knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation-mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.

13.
J Dairy Sci ; 101(4): 3568-3578, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428758

RESUMO

The unfolded protein response (UPR) describes a process involved in the homeostasis of endoplasmic reticulum (ER) and the differentiation of secretory cells. At present, the roles of UPR in the mammary gland tissue of dairy cattle are unknown. In the current study, we investigated the expression of UPR-related genes in Holstein cows during the developmental and lactating stages of the mammary gland tissue. To investigate the roles of UPR during the differentiation of mammary epithelial cells (MEC), we used MAC-T cells, a line of MEC. We collected samples of mammary gland tissue in dairy cows by biopsy during the late gestation and lactation periods and examined the expression of UPR-related genes by quantitative real-time PCR. Expression levels of the spliced X-box binding protein 1 (XBP1) and activating transcription factor 4 (ATF4) were found to be significantly higher in the mammary gland tissue 10 d before delivery compared with 40 d before delivery. An investigation before and after differentiation in MAC-T cells showed that the expression of ATF4 increased after differentiation of MEC, whereas that of the spliced XBP1 did not significantly change. Western blot analysis revealed that the differentiation-inducing stimulus induced phosphorylation of eukaryotic initiation factor 2α (eIF2α) but reduced that of protein kinase RNA-like endoplasmic reticulum kinase (PERK). Additionally, in ATF4-knockdown bovine MEC, differentiation was significantly suppressed; ATF4 knockdown also significantly suppressed the expression of glucocorticoid and insulin receptors. These results revealed that ER stress-independent ATF4 is involved in the cell differentiation mechanism, either directly or indirectly, via the control of the expression of lactogenic hormone receptors in bovine MEC. Immediately after parturition, gene expression levels of the spliced XBP1, ATF4, and C/EBP homologous protein (CHOP) markedly increased in mammary gland tissue, with a strong negative correlation between expression of CHOP and initial milk yield; CHOP is an apoptosis-related protein induced by ER stress. The above findings indicate that UPR is intrinsically associated with apoptosis of MEC, thus affecting the differentiation of these cells, as well as milk yield.


Assuntos
Apoptose , Bovinos , Diferenciação Celular , Glândulas Mamárias Animais/citologia , Resposta a Proteínas não Dobradas , Animais , Estresse do Retículo Endoplasmático , Células Epiteliais/citologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Lactação , Fosforilação , Gravidez , Fator de Transcrição CHOP , Proteína 1 de Ligação a X-Box/metabolismo
14.
Biochem Biophys Res Commun ; 497(2): 597-604, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29454968

RESUMO

Transcription and pre-mRNA splicing are complex, coupled processes that involve transcriptional co-regulators. Ess2 (also termed Dgcr14) is a nuclear protein that enhances the transcriptional activity of retinoic acid receptor-related orphan receptor gamma/gamma-t (Rorγ/γt). Ess2 is also a component of the spliceosomal C complex (containing U2, U5 and U6 snRNAs). However, the domains in Ess2 that function in splicing and transcription have not been identified. To elucidate the roles of Ess2 in splicing and transcription, we performed RNA immunoprecipitation (RIP) assays to detect Ess2-interacting snRNAs. We found that Ess2 associated with U6 snRNA as well as U1 and U4 snRNAs. Experiments using Ess2 deletion mutants showed that a C-terminus deletion mutant of Ess2 (1-399 a. a.) lost its ability to associate with snRNAs, whereas the N-terminus domain of Ess2 (1-200 a. a.) associated with Rorγ/γt, but not with snRNAs. Interestingly, experiments using anti-ROR common antibody showed that Rors also associated with U4 and U6 snRNAs. Ess2 knockdown in a T cell hybridoma (68-41 cells) abrogated the interaction between spliceosomes and Rors. An Ess2-dependent association was also found between an lncRNA (Rmrp) and Rors. We thus propose that Ess2 associates with both transcriptional factors and spliceosomal complexes and modulates splicing reactions coupled with transcription factors.


Assuntos
Proteínas Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Nuclear Pequeno/metabolismo , Spliceossomos/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Mutação , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Domínios e Motivos de Interação entre Proteínas , Splicing de RNA , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Ativação Transcricional
15.
Sci Rep ; 7(1): 240, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325912

RESUMO

The development and differentiation of steroidogenic organs are controlled by Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1). Besides, lysosomal activity is required for steroidogenesis and also enables adrenocortical cell to survive during stress. However, the role of lysosomal activity on steroidogenic cell growth is as yet unknown. Here, we showed that lysosomal activity maintained Ad4BP/SF-1 protein stability for proper steroidogenic cell growth. Treatment of cells with lysosomal inhibitors reduced steroidogenic cell growth in vitro. Suppression of autophagy did not affect cell growth indicating that autophagy was dispensable for steroidogenic cell growth. When lysosomal activity was inhibited, the protein stability of Ad4BP/SF-1 was reduced leading to reduced S phase entry. Interestingly, treatment of cells with lysosomal inhibitors reduced glycolytic gene expression and supplying the cells with pyruvate alleviated the growth defect. ChIP-sequence/ChIP studies indicated that Ad4BP/SF-1 binds to the upstream region of Ccne1 (cyclin E1) gene during G1/S phase. In addition, treatment of zebrafish embryo with lysosomal inhibitor reduced the levels of the interrenal (adrenal) gland markers. Thus lysosomal activity maintains steroidogenic cell growth via stabilizing Ad4BP/SF-1 protein.


Assuntos
Proliferação de Células , Ciclina E/biossíntese , Lisossomos/metabolismo , Proteínas Oncogênicas/biossíntese , Fator Esteroidogênico 1/metabolismo , Animais , Células Cultivadas , Glicólise , Camundongos , Peixe-Zebra/embriologia
16.
J Vis Exp ; (119)2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28190051

RESUMO

Transcriptional coregulators are vital to the efficient transcriptional regulation of nuclear chromatin structure. Coregulators play a variety of roles in regulating transcription. These include the direct interaction with transcription factors, the covalent modification of histones and other proteins, and the occasional chromatin conformation alteration. Accordingly, establishing relatively quick methods for identifying proteins that interact within this network is crucial to enhancing our understanding of the underlying regulatory mechanisms. LC-MS/MS-mediated protein binding partner identification is a validated technique used to analyze protein-protein interactions. By immunoprecipitating a previously-identified member of a protein complex with an antibody (occasionally with an antibody for a tagged protein), it is possible to identify its unknown protein interactions via mass spectrometry analysis. Here, we present a method of protein preparation for the LC-MS/MS-mediated high-throughput identification of protein interactions involving nuclear cofactors and their binding partners. This method allows for a better understanding of the transcriptional regulatory mechanisms of the targeted nuclear factors.


Assuntos
Cromatografia Líquida/métodos , DNA Helicases/metabolismo , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem/métodos , Cromatina/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Imunoprecipitação , Proteínas/metabolismo , Fatores de Transcrição/metabolismo
17.
Biochem Biophys Res Commun ; 484(4): 903-908, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28189674

RESUMO

The accumulation of misfolded proteins in the ER provokes ER stress by increasing the demand for energy, chaperones, and other proteins that are needed to fold client proteins or to degrade unfoldable secretory cargo. This stress activates a signaling network called the unfolded protein response (UPR). However, recent accumulated data suggested that the UPR also provides important signals for regulating cell differentiation and maturation. However, the relationship between UPR and mammary gland development has not been fully elucidated. To define the involvement of the UPR in mammary gland development, mammary glands were collected from non-pregnant mice, at days 5, 10 and 15 of pregnancy, at days 1 and 7 of lactation, and the expression patterns of UPR-related genes were determined by real-time PCR. We found that the mRNA expression of ATF4 and XBP1 significant increased during pregnancy. Moreover, we found that both ATF4 and XBP1 proteins are expressed in mammary epithelial cells by immunohistological analysis. In order to know the role of ATF4 and XBP1 in the differentiation of mammary epithelial cell, we performed gene knockdown experiment using HC11 cells. We found that ATF4 or XBP1 knockdown suppressed the mRNA expression of beta-casein and lactogenic hormone receptor in differentiating HC11 cells. Our results demonstrate that XBP1 and ATF4, which are UPR-related transcription factors, directly or indirectly participate in cell differentiation mechanisms through the regulation of the expression of lactogenic hormone receptors in mouse mammary epithelial cells.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/fisiologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/fisiologia , Prenhez/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Diferenciação Celular , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Camundongos , Gravidez
18.
FEBS Lett ; 590(16): 2671-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27317902

RESUMO

Novel methods that increase the efficiency of gene delivery to cells will have many useful applications. Here, we report a simple approach involving depletion of p62/SQSTM1 to enhance the efficiency of gene delivery. The efficiency of reporter gene delivery was remarkably higher in p62-knockout murine embryonic fibroblast (MEF) cells compared with normal MEF cells. This higher efficiency was partially attenuated by ectopic expression of p62. Furthermore, siRNA-mediated knockdown of p62 clearly increased the efficiency of transfection of murine embryonic stem (mES) cells and human HeLa cells. These data indicate that p62 acts as a key regulator of gene delivery.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Proteína Sequestossoma-1/genética , Transfecção/métodos , Animais , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Interferente Pequeno/genética , Proteína Sequestossoma-1/antagonistas & inibidores
19.
Dev Growth Differ ; 58(4): 367-82, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27125315

RESUMO

Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates.


Assuntos
Proteínas de Anfíbios/biossíntese , Proteínas Cromossômicas não Histona/biossíntese , Regulação da Expressão Gênica , Coração/fisiologia , Proteínas Musculares/biossíntese , Regeneração/fisiologia , Ambystoma mexicanum , Animais , Proliferação de Células/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo
20.
Sci Rep ; 5: 14498, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412716

RESUMO

Transcriptional coregulators contribute to several processes involving nuclear receptor transcriptional regulation. The transcriptional coregulator androgen receptor-interacting protein 4 (ARIP4) interacts with nuclear receptors and regulates their transcriptional activity. In this study, we identified p62 as a major interacting protein partner for ARIP4 in the nucleus. Nuclear magnetic resonance analysis demonstrated that ARIP4 interacts directly with the ubiquitin-associated (UBA) domain of p62. ARIP4 and ubiquitin both bind to similar amino acid residues within UBA domains; therefore, these proteins may possess a similar surface structure at their UBA-binding interfaces. We also found that p62 is required for the regulation of ARIP4 protein levels under nutrient starvation conditions. We propose that p62 is a novel binding partner for ARIP4, and that its binding regulates the cellular protein level of ARIP4 under conditions of metabolic stress.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Animais , Autofagia , Proteínas de Transporte , Linhagem Celular , DNA Helicases/química , Expressão Ectópica do Gene , Ativação Enzimática , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Inanição , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA