Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260683

RESUMO

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.

2.
Cell Rep ; 40(3): 111113, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858543

RESUMO

Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls stability and translation of mRNAs encoding iron-containing proteins, increase lifespan by alleviating its repressive effects on mitochondrial function. Mutation of the conserved cysteine residue in Cth2 that inhibits its RNA-binding activity is sufficient to confer longevity, whereas Cth2 gain of function shortens replicative lifespan. Consistent with its function in RNA degradation, Cth2 deficiency relieves Cth2-mediated post-transcriptional repression of nuclear-encoded components of the electron transport chain. Our findings uncover a major role of the RNA-binding protein Cth2 in the regulation of lifespan and suggest that modulation of iron starvation signaling can serve as a target for potential aging interventions.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Tristetraprolina/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Longevidade , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética
3.
Geroscience ; 44(4): 1995-2006, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35695982

RESUMO

At the cellular level, many aspects of aging are conserved across species. This has been demonstrated by numerous studies in simple model organisms like Saccharomyces cerevisiae, Caenorhabdits elegans, and Drosophila melanogaster. Because most genetic screens examine loss of function mutations or decreased expression of genes through reverse genetics, essential genes have often been overlooked as potential modulators of the aging process. By taking the approach of increasing the expression level of a subset of conserved essential genes, we found that 21% of these genes resulted in increased replicative lifespan in S. cerevisiae. This is greater than the ~ 3.5% of genes found to affect lifespan upon deletion, suggesting that activation of essential genes may have a relatively disproportionate effect on increasing lifespan. The results of our experiments demonstrate that essential gene overexpression is a rich, relatively unexplored means of increasing eukaryotic lifespan.


Assuntos
Longevidade , Saccharomyces cerevisiae , Animais , Longevidade/genética , Saccharomyces cerevisiae/genética , Genes Essenciais/genética , Drosophila melanogaster/genética , Envelhecimento/fisiologia
4.
Leukemia ; 36(7): 1781-1793, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35590033

RESUMO

Responses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples. This drug combination evicts both MYC and PU.1 from chromatin driving cell cycle exit. Using a live cell biosensor for AKT activity, we identify early adaptive changes in kinase signaling following KIT inhibition that are reversed with the addition of LSD1 inhibitor via modulation of the GSK3a/b axis. Multi-omic analyses, including scRNA-seq, ATAC-seq and CUT&Tag, confirm these mechanisms in primary KIT-mutant AML. Collectively, this work provides rational for a clinical trial to assess the efficacy of KIT and LSD1 inhibition in patients with KIT-mutant AML.


Assuntos
Histona Desmetilases , Leucemia Mieloide Aguda , Ciclo Celular , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
6.
Elife ; 102021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545808

RESUMO

In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation-such as mutations or chemicals that interfere with growth regulatory pathways-can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.


Cells make different proteins to perform different tasks. Each protein is a long chain of building blocks called amino acids that must fold into a particular shape before it can be useful. Some proteins can fold in more than one way, a normal form and a 'prion' form. Prions are unusual in that they can force normally folded proteins with the same amino acid sequence as them to refold into new prions. This means that a single prion can make many more that are inherited when cells divide. Some prions can cause disease, but others may be beneficial. Pus4 is a yeast protein that is typically involved in modifying ribonucleic acids, molecules that help translate genetic information into new proteins. Sometimes Pus4 can adopt a beneficial prion conformation called [BIG+]. When yeast cells have access to plenty of nutrients, [BIG+] helps them grow faster and larger, but this comes at the cost of a shorter lifespan. Garcia, Campbell et al. combined computational modeling and experiments in baker's yeast (Saccharomyces cerevisiae) to investigate the role of [BIG+]. They found that the prion accelerated protein production, leading to both faster growth and a shorter lifespan in these cells, even without any changes in gene sequence. Garcia, Campbell et al.'s findings explain the beneficial activity of prion proteins in baker's yeast cells. The results also describe how cells balance a tradeoff between growth and lifespan without any changes in the genome. This helps to highlight that genetics do not always explain the behaviors of cells, and further methods are needed to better understand cell biology.


Assuntos
Proliferação de Células , Transferases Intramoleculares/metabolismo , Meiose , Proteínas Priônicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Crescimento Celular , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Transferases Intramoleculares/genética , Longevidade , Proteínas Priônicas/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
7.
Geroscience ; 43(5): 2595-2609, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297314

RESUMO

As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.


Assuntos
Pterocarpus , Saccharomycetales , Longevidade , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae
8.
Elife ; 92020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432546

RESUMO

A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.


Assuntos
Carbono/metabolismo , Divisão Celular/fisiologia , Senescência Celular/fisiologia , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ciclo Celular/genética , Divisão Celular/genética , Senescência Celular/genética , Biblioteca Gênica , Mutação com Perda de Função , Metionina/metabolismo , Fenótipo , RNA Fúngico , Proteínas de Ligação a RNA/genética , RNA-Seq , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo
9.
Genetics ; 213(1): 229-249, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31292210

RESUMO

The complex structure and repetitive nature of eukaryotic ribosomal DNA (rDNA) is a challenge for genome assembly, thus the consequences of sequence variation in rDNA remain unexplored. However, renewed interest in the role that rDNA variation may play in diverse cellular functions, aside from ribosome production, highlights the need for a method that would permit genetic manipulation of the rDNA. Here, we describe a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to edit the rDNA locus in the budding yeast Saccharomyces cerevisiae, developed independently but similar to one developed by others. Using this approach, we modified the endogenous rDNA origin of replication in each repeat by deleting or replacing its consensus sequence. We characterized the transformants that have successfully modified their rDNA locus and propose a mechanism for how CRISPR/Cas9-mediated editing of the rDNA occurs. In addition, we carried out extended growth and life span experiments to investigate the long-term consequences that altering the rDNA origin of replication have on cellular health. We find that long-term growth of the edited clones results in faster-growing suppressors that have acquired segmental aneusomy of the rDNA-containing region of chromosome XII or aneuploidy of chromosomes XII, II, or IV. Furthermore, we find that all edited isolates suffer a reduced life span, irrespective of their levels of extrachromosomal rDNA circles. Our work demonstrates that it is possible to quickly, efficiently, and homogeneously edit the rDNA origin via CRISPR/Cas9.


Assuntos
Sistemas CRISPR-Cas , DNA Ribossômico/genética , Edição de Genes/métodos , Origem de Replicação , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Sequência Consenso , Aptidão Genética , Genótipo , Fenótipo
10.
Transl Med Aging ; 3: 104-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32190787

RESUMO

An increase in cell size with age is a characteristic feature of replicative aging in budding yeast. Deletion of the gene encoding Whi5 results in shortened duration of G1 and reduced cell size, and has been previously suggested to increase replicative lifespan. Upon careful analysis of multiple independently derived haploid and homozygous diploid whi5Δ mutants, we find no effect on lifespan, but we do confirm the reduction in cell size. We suggest that instead of antagonizing lifespan, the elongated G1 phase of the cell cycle during aging may actually play an important role in allowing aged cells time to repair accumulating DNA damage.

11.
J Med Microbiol ; 67(1): 29-32, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205135

RESUMO

Small-colony variants (SCVs) were obtained from an Enterobacter cloacae clinical isolate in Okinawa, Japan. One variant showed auxotrophy for hemin with a deletion of 20 365 nucleotides, dosC-ydiK-mmuP-mmuM-tauA-tauB-tauC-tauD-hemB-yaiT-yaiV-ampH-yddQ-sbmA-yaiW-yaiY-yaiZ, including hemB, and was more resistant to aminoglycosides and carbapenems, but more susceptible to aztreonam, than the parent strain.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Aztreonam/farmacologia , Proteínas de Bactérias/genética , Enterobacter cloacae/genética , Hemina , Humanos , Japão , Deleção de Sequência/genética
12.
Int J Infect Dis ; 63: 72-73, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28705756

RESUMO

The mcr-1 was first detected on a plasmid in colistin-resistant Escherichia coli from livestock and patients in China. We described here the emergence of colistin-resistant E. coli clinical isolates harboring mcr-1 on the chromosomes in Vietnam. To our knowledge, this is the first report of hospital-acquired E. coli isolates harboring mcr-1 in a medical setting in Vietnam.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Escherichia coli/isolamento & purificação , Animais , Antibacterianos/farmacologia , China , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Humanos , Gado/microbiologia , Vietnã/epidemiologia
13.
BMC Infect Dis ; 17(1): 467, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676118

RESUMO

METHODS: Twenty-seven clinical isolates of carbapenem-resistant Klebsiella pneumoniae with MICs ≥4 mg/L for imipenem or meropenem were obtained from inpatients in a hospital in Vietnam. Antimicrobial susceptibility tests and whole genome sequencing were performed. Multilocus sequence typing and the presence of drug resistant genes were determined and a maximum-likelihood phylogenetic tree was constructed by SNP alignment of whole genome sequencing data. RESULTS: All the isolates harbored one of genes encoding carbapenemases, including KPC-2, NDM-1, NDM-4 and OXA-48. Of the isolates, 13 were resistant to arbekacin with MICs ≥256 mg/L and to amikacin with MICs ≥512 mg/L. These isolates harbored a gene encoding a 16S rRNA methylase, either RmtB or RmtC. Eighteen and 4 isolates belonged to international clones, ST15 and ST16, respectively. None of the isolates had colistin-resistant factors. CONCLUSION: Carbapenem-resistant K. pneumoniae isolates belonged to international clones spread in a medical setting in Vietnam, and that these isolates harbored genes encoding various combinations of carbapenemases and 16S rRNA methylases. This is the first report of KPC-2, NDM-4 and OXA-48 producers in a medical setting in Vietnam.


Assuntos
Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Humanos , Klebsiella pneumoniae/isolamento & purificação , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Vietnã , Resistência beta-Lactâmica/efeitos dos fármacos
14.
Antimicrob Agents Chemother ; 60(11): 6853-6858, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600046

RESUMO

Forty clinical isolates of multidrug-resistant Pseudomonas aeruginosa were obtained in a medical setting in Hanoi, Vietnam. Whole genomes of all 40 isolates were sequenced by MiSeq (Illumina), and phylogenic trees were constructed from the single nucleotide polymorphism concatemers. Of these 40 isolates, 24 (60.0%) harbored metallo-ß-lactamase-encoding genes, including blaIMP-15, blaIMP-26, blaIMP-51, and/or blaNDM-1 Of these 24 isolates, 12 harbored blaIMP-26 and belonged to sequence type 235 (ST235). Escherichia coli expressing blaIMP-26 was significantly more resistant to doripenem and meropenem than E. coli expressing blaIMP-1 and blaIMP-15 IMP-26 showed higher catalytic activity against doripenem and meropenem than IMP-1 and against all carbapenems tested, including doripenem, imipenem, meropenem, and panipenem, than did IMP-15. These data suggest that clinical isolates of multidrug-resistant ST235 P. aeruginosa producing IMP-26 with increased carbapenem-hydrolyzing activities are spreading in medical settings in Vietnam.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Carbapenêmicos/farmacocinética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Vietnã , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
Cell Metab ; 22(5): 895-906, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26456335

RESUMO

Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.


Assuntos
Envelhecimento/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Longevidade/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Caenorhabditis elegans/genética , Restrição Calórica , Dano ao DNA/genética , Deleção de Genes , Regulação da Expressão Gênica/genética , Genoma , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
16.
Proc Natl Acad Sci U S A ; 112(38): 11977-82, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351681

RESUMO

Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.


Assuntos
Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Divisão Celular Assimétrica , Citometria de Fluxo , Ontologia Genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
17.
PLoS Genet ; 11(1): e1004968, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25629410

RESUMO

Elevated proteasome activity extends lifespan in model organisms such as yeast, worms and flies. This pro-longevity effect might be mediated by improved protein homeostasis, as this protease is an integral module of the protein homeostasis network. Proteasomes also regulate cellular processes through temporal and spatial degradation of signaling pathway components. Here we demonstrate that the regulatory function of the proteasome plays an essential role in aging cells and that the beneficial impact of elevated proteasome capacity on lifespan partially originates from deregulation of the AMPK signaling pathway. Proteasome-mediated lifespan extension activity was carbon-source dependent and cells with enhancement proteasome function exhibited increased respiratory activity and oxidative stress response. These findings suggested that the pro-aging impact of proteasome upregulation might be related to changes in the metabolic state through a premature induction of respiration. Deletion of yeast AMPK, SNF1, or its activator SNF4 abrogated proteasome-mediated lifespan extension, supporting this hypothesis as the AMPK pathway regulates metabolism. We found that the premature induction of respiration in cells with increased proteasome activity originates from enhanced turnover of Mig1, an AMPK/Snf1 regulated transcriptional repressor that prevents the induction of genes required for respiration. Increasing proteasome activity also resulted in partial relocation of Mig1 from the nucleus to the mitochondria. Collectively, the results argue for a model in which elevated proteasome activity leads to the uncoupling of Snf1-mediated Mig1 regulation, resulting in a premature activation of respiration and thus the induction of a mitohormetic response, beneficial to lifespan. In addition, we observed incorrect Mig1 localization in two other long-lived yeast aging models: cells that overexpress SIR2 or deleted for the Mig1-regulator HXK2. Finally, compromised proteasome function blocks lifespan extension in both strains. Thus, our findings suggest that proteasomes, Sir2, Snf1 and Hxk2 form an interconnected aging network that controls metabolism through coordinated regulation of Mig1.


Assuntos
Envelhecimento/genética , Hexoquinase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Proteínas Quinases Ativadas por AMP/genética , Envelhecimento/metabolismo , Regulação Fúngica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo
18.
PLoS Genet ; 10(12): e1004860, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521617

RESUMO

The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Longevidade/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Avaliação Pré-Clínica de Medicamentos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Estabilidade Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptofano/metabolismo
19.
PLoS Genet ; 7(9): e1002253, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21931558

RESUMO

Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS-related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans.


Assuntos
Proteínas de Ligação a DNA/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Estresse Oxidativo/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Aging Cell ; 10(6): 1089-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21902802

RESUMO

Activation of Sir2 orthologs is proposed to increase lifespan downstream of dietary restriction. Here, we describe an examination of the effect of 32 different lifespan-extending mutations and four methods of DR on replicative lifespan (RLS) in the short-lived sir2Δ yeast strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce rapidly by a mechanism distinct from that of wild-type cells. They also demonstrate that failure to observe lifespan extension in a short-lived background, such as cells or animals lacking sirtuins, should be interpreted with caution.


Assuntos
Proteínas de Ligação a DNA/genética , Longevidade/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Proteínas de Ligação a DNA/deficiência , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genótipo , Modelos Biológicos , Variações Dependentes do Observador , Fenótipo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/deficiência , Sirtuína 2/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA