Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Elife ; 122023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910430

RESUMO

The defensive-offensive associations between algae and herbivores determine marine ecology. Brown algae utilize phlorotannin as their chemical defense against the predator Aplysia kurodai, which uses ß-glucosidase (akuBGL) to digest the laminarin in algae into glucose. Moreover, A. kurodai employs Eisenia hydrolysis-enhancing protein (EHEP) as an offense to protect akuBGL activity from phlorotannin inhibition by precipitating phlorotannin. To underpin the molecular mechanism of this digestive-defensive-offensive system, we determined the structures of the apo and tannic acid (TNA, a phlorotannin analog) bound forms of EHEP, as well as the apo akuBGL. EHEP consisted of three peritrophin-A domains arranged in a triangular shape and bound TNA in the center without significant conformational changes. Structural comparison between EHEP and EHEP-TNA led us to find that EHEP can be resolubilized from phlorotannin precipitation at an alkaline pH, which reflects a requirement in the digestive tract. akuBGL contained two GH1 domains, only one of which conserved the active site. Combining docking analysis, we propose the mechanisms by which phlorotannin inhibits akuBGL by occupying the substrate-binding pocket, and EHEP protects akuBGL against this inhibition by binding with phlorotannin to free the akuBGL pocket.


Assuntos
Phaeophyceae , Proteínas , Animais , Proteínas/metabolismo , Phaeophyceae/metabolismo , Aplysia , Glucose/metabolismo , Domínio Catalítico
2.
Biochem Biophys Res Commun ; 552: 9-16, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740666

RESUMO

Although natriuretic peptide receptor-C (NPR-C) is involved in the clearance of natriuretic peptides from plasma, it also possesses other physiological functions, such as inhibition of adenylyl cyclase activity through Gαi. However, the physiological roles and intracellular signaling pathways of NPR-C have yet been not fully elucidated. In this study, we identified a RhoA-specific guanine nucleotide-exchange factor, GEF-H1, as a novel binding protein of NPR-C. We demonstrated that endogenous NPR-C interacted with GEF-H1 in HeLa cells, and that the interaction between NPR-C and GEF-H1 was dependent on a 37-amino acid cytoplasmic region of NPR-C. In contrast, another natriuretic peptide receptor, NPR-A, which includes the kinase homology and guanylyl cyclase domains in the intracellular region, did not interact with GEF-H1. We also revealed that the ligands of NPR-C (i.e., ANP, CNP, and osteocrin) caused dissociation of GEF-H1 from NPR-C. Furthermore, osteocrin treatment induced phosphorylation of GEF-H1 at Ser-886, enhanced the interaction of GEF-H1 with 14-3-3, and increased the amount of activated GEF-H1. These findings strongly supported that NPR-C may be involved in diverse physiological roles by regulating GEF-H1 signaling.


Assuntos
Receptores do Fator Natriurético Atrial/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Ligantes , Proteínas Musculares/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fatores de Transcrição/farmacologia
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 20-24, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929182

RESUMO

Eisenia hydrolysis-enhancing protein (EHEP), which is a novel protein that has been identified in Aplysia kurodai, protects ß-glucosidases from phlorotannin inhibition to facilitate the production of glucose from the laminarin abundant in brown algae. Hence, EHEP has attracted attention for its potential applications in producing biofuel from brown algae. In this study, EHEP was purified from the natural digestive fluid of A. kurodai and was crystallized using the sitting-drop vapor-diffusion method. Native and SAD (single-wavelength anomalous diffraction) data sets were successfully collected at resolutions of 1.20 and 2.48 Šusing wavelengths of 1.0 and 2.1 Å, respectively, from crystals obtained in initial screening. The crystals belonged to space group P212121 and contained one EHEP molecule in the asymmetric unit. All 20 S-atom sites in EHEP were located and the phases were determined by the SAD method using the S atoms in the natural protein as anomalous scatterers (native-SAD). After phase improvement, interpretable electron densities were obtained and 58% of the model was automatically built.


Assuntos
Aplysia/química , Cristalização/métodos , Proteínas/química , Animais , Aplysia/enzimologia , Aplysia/genética , Aplysia/metabolismo , Cristalografia por Raios X , Hidrólise , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/genética , Proteínas/isolamento & purificação
4.
Artigo em Inglês | MEDLINE | ID: mdl-31454681

RESUMO

Clip domain serine proteases (CDSPs) participate in the extracellular signaling cascades of various biological processes such as innate immune responses in invertebrates. CDSP genes have been isolated from numerous invertebrates. Nevertheless, the enzymatic properties of mollusk CDSPs are poorly understood. In the present study, we demonstrated that the amino acid sequences of the trypsin-like serine protease purified from the digestive fluid of the sea hare, Aplysia kurodai resemble those of the unidentified CDSP-type protein (TPS3) of Aplysia californica predicted by genome analysis. The purified enzyme produced single 34 and 26.5 kDa bands on SDS-PAGE under non-reducing and reducing conditions, respectively. The 34-kDa band generated two amino-terminal sequences that were similar to the deduced sequences of the clip and catalytic domains of TPS3. The single amino-terminal sequence of the 26.5 kDa band showed a single sequence homologous to the catalytic domain. Thus, the purified enzyme consists of clip and catalytic domains bridged by disulfide linkage(s). The subsite specificity and inhibitor sensitivity of the purified enzyme were clearly distinct from those of horseshoe crab and silkworm CDSPs. A good substrate for the sea hare enzyme was pyroglutamyl-Arg-Thr-Lys-Arg-4-methyl-7-coumarylamide. The enzyme activity was strongly inhibited by aprotinin but not leupeptin. The physiological function of the enzyme in the digestive fluid remains to be determined.


Assuntos
Aplysia/enzimologia , Sistema Digestório/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Animais , Aplysia/genética , Domínio Catalítico , Eletroforese em Gel de Poliacrilamida , Serina Endopeptidases/genética , Especificidade por Substrato
5.
PLoS One ; 13(11): e0205915, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412581

RESUMO

Endo-ß-1,4-glucanase AkEG21 belonging to glycosyl hydrolase family 45 (GHF45) is the most abundant cellulase in the digestive fluid of sea hare (Aplysia kurodai). The specific activity of this 21-kDa enzyme is considerably lower than those of other endo ß-1,4-glucanases in the digestive fluid of A. kurodai, therefore its role in whole cellulose hydrolysis by sea hare is still uncertain. Although AkEG21 has a catalytic domain without a cellulose binding domain, it demonstrated stable binding to cellulose fibers, similar to that of fungal cellobiohydrolase (CBH) 1 and CBH 2, which is strongly inhibited by cellohexaose, suggesting the involvement of the catalytic site in cellulose binding. Cellulose-bound AkEG21 hydrolyzed cellulose to cellobiose, cellotriose and cellotetraose, but could not digest an external substrate, azo-carboxymethyl cellulose. Cellulose hydrolysis was considerably stimulated by the synergistic action of cellulose-bound AkEG21 and AkEG45, another ß-1,4-endoglucanase present in the digestive fluid of sea hare; however no synergy in carboxymethylcellulose hydrolysis was observed. When AkEG21 was removed from the digestive fluid by immunoprecipitation, the cellulose hydrolyzing activity of the fluid was significantly reduced, indicating a critical role of AkEG21 in cellulose hydrolysis by A. kurodai. These findings suggest that AkEG21 is a processive endoglucanase functionally equivalent to the CBH, which provides a CBH-independent mechanism for the mollusk to digest seaweed cellulose to glucose.


Assuntos
Aplysia/enzimologia , Celulase/química , Celulose/química , Digestão/genética , Animais , Aplysia/genética , Domínio Catalítico/genética , Celobiose/química , Celulase/genética , Celulose/análogos & derivados , Celulose/genética , Celulose/metabolismo , Digestão/fisiologia , Glucose/química , Glucose/metabolismo , Hidrólise , Cinética , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Domínios Proteicos/genética , Tetroses/química , Tetroses/metabolismo
6.
Biosci Biotechnol Biochem ; 82(12): 2064-2071, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30185129

RESUMO

A variety of polyphenols have been isolated from plants, and their biological activities have been examined. Sudachitin (5,7,4'-trihydroxy-6,8,3'-trimethoxyflavone) is a polymethoxyflavone that is isolated from the peel of Citrus sudachi. Although we previously reported that sudachitin possesses an anti-inflammatory activity, its other biological activities are not yet understood. In this study, we report a novel biological activity of sudachitin, which selectively induced apoptosis in human keratinocyte HaCaT cells. Another polymethoxyflavone, nobiletin (5,6,7,8,3',4'-hexamethoxyflavone), promoted autophagy but not apoptosis in HaCaT cells. On the other hand, 3'-demethoxysudachitin (5,7,4'-trihydroxy-6,8-dimethoxyflavone) failed to induce apoptosis and autophagy. These results show that three polymethoxyflavones have different effects on apoptosis and autophagy in HaCaT cells. Understanding the structure and biological activity of polymethoxyflavones may lead to the discovery of potential candidates for cancer drug development without significant toxic side effects. Abbreviations: ROS: reactive oxygen species; DMSO: dimethyl sulfoxide; MTT: 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; PARP: poly(ADP-ribose) polymerase; PI: propidium iodide; MAPK: mitogen-activated protein kinase.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Citrus/química , Flavonas/farmacologia , Flavonoides/farmacologia , Glicosídeos/farmacologia , Queratinócitos/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Flavonas/química , Flavonoides/química , Glicosídeos/química , Humanos , Queratinócitos/citologia , Relação Estrutura-Atividade
7.
Biochem Biophys Res Commun ; 496(4): 1222-1228, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29397938

RESUMO

Death associated protein kinase (DAPK)-related apoptosis-inducing protein kinase (DRAK)-1 is a positive apoptosis regulator. However, the molecular mechanisms underlying the DRAK1-mediated apoptotic pathway remain unclear. In this study, we demonstrated the intracellular localization and binding partners of DRAK1. In human osteosarcoma cell line U2OS cells, DRAK1 was mainly localized in the nucleus and translocated outside the nucleus through Ser395 phosphorylation by protein kinase C. In the nucleus, DRAK1 associated with tumor suppressor p53 and positively regulated p53 transcriptional activity in response to DNA-damaging agent cisplatin. On the other hand, DRAK1 interacted with the mitochondrial inner-membrane protein, adenine nucleotide translocase (ANT)-2, an anti-apoptotic oncoprotein, outside the nucleus. These findings suggest that DRAK1 translocates in response to stimuli and induces apoptosis through its interaction with specific binding partners, p53 and/or ANT2.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Frações Subcelulares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases , Distribuição Tecidual
8.
J Anus Rectum Colon ; 2(Suppl I): S1-S51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31773066

RESUMO

Hereditary colorectal cancer accounts for less than 5% of all colorectal cancer cases. Some of the unique characteristics that are commonly encountered in cases of hereditary colorectal cancer include early age at onset, synchronous/metachronous occurrence of the cancer, and association with multiple cancers in other organs, necessitating different management from sporadic colorectal cancer. While the diagnosis of familial adenomatous polyposis might be easy because usually 100 or more adenomas that develop in the colonic mucosa are in this condition, Lynch syndrome, which is the most commonly associated disease with hereditary colorectal cancer, is often missed in daily medical practice because of its relatively poorly defined clinical characteristics. In addition, the disease concept and diagnostic criteria for Lynch syndrome, which was once called hereditary non-polyposis colorectal cancer, have changed over time with continual research, thereby possibly creating confusion in clinical practice. Under these circumstances, the JSCCR Guideline Committee has developed the "JSCCR Guidelines 2016 for the Clinical Practice of Hereditary Colorectal Cancer (HCRC)," to allow delivery of appropriate medical care in daily practice to patients with familial adenomatous polyposis, Lynch syndrome, or other related diseases. The JSCCR Guidelines 2016 for HCRC were prepared by consensus reached among members of the JSCCR Guideline Committee, based on a careful review of the evidence retrieved from literature searches, and considering the medical health insurance system and actual clinical practice settings in Japan. Herein, we present the English version of the JSCCR Guidelines 2016 for HCRC.

9.
Sci Rep ; 7: 45545, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361970

RESUMO

PCTAIRE kinase 3 (PCTK3) is a member of the cyclin dependent kinase family, but its physiological function remains unknown. We previously reported that PCTK3-knockdown HEK293T cells showed actin accumulation at the leading edge, suggesting that PCTK3 is involved in the regulation of actin reorganization. In this study, we investigated the physiological function and downstream signal transduction molecules of PCTK3. PCTK3 knockdown in HEK293T cells increased cell motility and RhoA/Rho-associated kinase activity as compared with control cells. We also found that phosphorylation at residue Tyr-397 in focal adhesion kinase (FAK) was increased in PCTK3-knockdown cells. FAK phosphorylation at Tyr-397 was increased in response to fibronectin stimulation, whereas its phosphorylation was suppressed by PCTK3. In addition, excessive expression of PCTK3 led to the formation of filopodia during the early stages of cell adhesion in HeLa cells. These results indicate that PCTK3 controls actin cytoskeleton dynamics by negatively regulating the FAK/Rho signaling pathway.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilação/fisiologia , Proteínas Tirosina Quinases/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Biochem Biophys Res Commun ; 483(1): 82-87, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28057484

RESUMO

Although type II cGMP-dependent protein kinase (PKGII) is a major downstream effector of cGMP in chondrocytes and attenuates the FGF receptor 3/ERK signaling pathway, its direct target proteins have not been fully explored. In the present study, we attempted to identify PKGII-targeted proteins, which are associated with the inhibition of FGF-induced MAPK activation. Although FGF2 stimulation induced the phosphorylation of ERK1/2, MEK1/2, and Raf-1 at Ser-338 in rat chondrosarcoma cells, pretreatment with a cell-permeable cGMP analog strongly inhibited their phosphorylation. On the other hand, Ser-43 of Raf-1 was phosphorylated by cGMP in a dose-dependent manner. Therefore, we examined the direct phosphorylation of Raf-1 by PKGII. Wild-type PKGII phosphorylated Raf-1 at Ser-43 in a cGMP-dependent manner, but a PKGII D412A/R415A mutant, which has a low affinity for cGMP, did not. Finally, we found that a phospho-mimic mutant, Raf-1 S43D, suppressed FGF2-induced MAPK pathway. These results suggest that PKGII counters FGF-induced MEK/ERK activation through the phosphorylation of Raf-1 at Ser-43 in chondrocytes.


Assuntos
Condrossarcoma/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Condrócitos/metabolismo , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/química , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Sistema de Sinalização das MAP Quinases , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Ratos , Serina/química , Transdução de Sinais , Células Tumorais Cultivadas
11.
Biosci Biotechnol Biochem ; 81(3): 534-540, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28051915

RESUMO

To develop new whitening agents from natural products, we screened 80 compounds derived from crude drugs in Kampo medicine in a melanin synthesis inhibition assay using murine B16 melanoma cells. The screen revealed that treatment with alisol B, a triterpene from Alismatis rhizoma, significantly decreased both melanin content and cellular tyrosinase activity in B16 cells. However, alisol B did not directly inhibit mushroom tyrosinase activity in vitro. Therefore, we investigated the mechanism underlying the inhibitory effect of alisol B on melanogenesis. Alisol B suppressed mRNA induction of tyrosinase and its transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, alisol B reduced the phosphorylation of CREB and maintained the activation of ERK1/2. These results suggest that the reduction in melanin production by alisol B is due to the downregulation of MITF through the suppression of CREB and activation of ERK and that alisol B may be useful as a new whitening agent.


Assuntos
Alisma/química , Colestenonas/farmacologia , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Preparações Clareadoras de Pele/farmacologia , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Melaninas/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Fosforilação/efeitos dos fármacos , Rizoma/química , Transdução de Sinais/efeitos dos fármacos
12.
PLoS One ; 12(1): e0170669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28129373

RESUMO

The digestive fluid of the sea hare Aplysia kurodai can liberate approximately 2.5 mg of glucose from 10 mg of dried Eisenia bicyclis powder. Although laminaran, a major storage polysaccharide in E. bicyclis, is easily digested to glucose by the synergistic action of the 110 and 210 kDa A. kurodai ß-glucosidases (BGLs), glucose is not liberated from E. bicyclis by direct incubation with these BGLs. To clarify this discrepancy, we searched for an Eisenia hydrolysis enhancing protein (EHEP) in the digestive fluid of A. kurodai. A novel 25 kDa protein that enhances E. bicyclis saccharification by ß-glucosidases was purified to a homogeneous state from the digestive fluid of A. kurodai, and its cDNA was cloned from total cDNAs reverse-transcribed from hepatopancreas total RNA. The E. bicyclis extract strongly inhibited BGLs, suggesting some compound within this brown alga functioned as a feeding deterrent. However, when E. bicyclis was incubated with BGLs in the presence of EHEP, glucose production was markedly increased. As E. bicyclis is rich in phlorotannin, which are only found in brown algae, our study suggested that these compounds are the main BGL inhibitors in E. bicyclis extract. EHEP protects BGLs from phlorotannin inhibition by binding to phlorotannins and forming an insoluble complex with phloroglucinol and phlorotannins. These findings indicated that EHEP plays a key role in the saccharification of brown seaweeds containing phlorotannins in the digestive fluid of A. kurodai. This is the first report of EHEP as a phlorotannin-binding protein that protects BGLs from inhibition.


Assuntos
Aplysia/genética , Digestão/genética , Glucose/metabolismo , Proteínas/genética , Taninos/metabolismo , Animais , Aplysia/metabolismo , Celulases/genética , Celulases/metabolismo , Clonagem Molecular , DNA Complementar , Glucanos/metabolismo , Hidrólise , Phaeophyceae/química , Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína , Taninos/química , Taninos/genética
13.
Glia ; 64(11): 1938-61, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27464357

RESUMO

To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961.


Assuntos
Anticorpos Monoclonais/metabolismo , Encéfalo/citologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Microglia/enzimologia , Microglia/imunologia , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Antígenos CD/metabolismo , Células COS/efeitos dos fármacos , Células COS/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Chlorocebus aethiops , Ectodisplasinas/metabolismo , Embrião de Mamíferos , Olho/embriologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Feminino , Furina/genética , Furina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Interleucina-12/farmacologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Microglia/classificação , Microglia/efeitos dos fármacos , Proteoglicanas/metabolismo , Ratos , Ratos Wistar
14.
Biochem Biophys Res Commun ; 468(1-2): 113-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529546

RESUMO

Death-associated protein kinase 2 (DAPK2) is a positive regulator of apoptosis. Although we recently reported that 14-3-3 proteins inhibit DAPK2 activity and its subsequent apoptotic effects via binding to DAPK2, the molecular mechanisms underlying the DAPK2-mediated apoptotic pathway remain unclear. Therefore, we attempted to further identify DAPK2-interacting proteins using pull-down assays and mass spectrometry. The microtubule ß-tubulin was identified as a novel DAPK2-binding protein in HeLa cells. Pull-down assays revealed that DAPK2 interacted with the α/ß-tubulin heterodimer, and that the C-terminal region of DAPK2, which differs from that of other DAPK family members, was sufficient for the association with ß-tubulin. Although the microtubule-depolymerizing agent nocodazole induced apoptosis in HeLa cells, the level of apoptosis was significantly decreased in the DAPK2 knockdown cells. Furthermore, we found that treatment with nocodazole resulted in an increased binding of DAPK2 to ß-tubulin. These findings indicate that DAPK2 mediates nocodazole-induced apoptosis via binding to tubulin.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Nocodazol/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
15.
Biochem Biophys Res Commun ; 464(3): 780-6, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26166824

RESUMO

Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Núcleo Celular/metabolismo , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , RNA Helicases/metabolismo , Interferência de RNA , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
16.
Biochem Biophys Res Commun ; 464(1): 70-5, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26047703

RESUMO

Death-associated protein kinase 2 (DAPK2), a Ca(2+)/calmodulin-regulated serine/threonine kinase, induces apoptosis. However, the signaling mechanisms involved in this process are unknown. Using a proteomic approach, we identified 14-3-3 proteins as novel DAPK2-interacting proteins. The 14-3-3 family has the ability to bind to phosphorylated proteins via recognition of three conserved amino acid motifs (mode 1-3 motifs), and DAPK2 contains the mode 3 motif ((pS/pT)X1-2-COOH). The interaction of 14-3-3 proteins with DAPK2 was dependent on the phosphorylation of Thr(369), and effectively suppressed DAPK2 kinase activity and DAPK2-induced apoptosis. Furthermore, we revealed that the 14-3-3 binding site Thr(369) of DAPK2 was phosphorylated by the survival kinase Akt. Our findings suggest that DAPK2-induced apoptosis is negatively regulated by Akt and 14-3-3 proteins.


Assuntos
Proteínas 14-3-3/genética , Apoptose/genética , Biomarcadores Tumorais/genética , Proteínas Quinases Associadas com Morte Celular/genética , Exorribonucleases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biomarcadores Tumorais/metabolismo , Células COS , Calcineurina/genética , Calcineurina/metabolismo , Chlorocebus aethiops , Proteínas Quinases Associadas com Morte Celular/metabolismo , Exorribonucleases/metabolismo , Regulação da Expressão Gênica , Humanos , Células MCF-7 , Dados de Sequência Molecular , Fosforilação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Treonina/metabolismo , Transfecção
17.
J Bone Miner Metab ; 33(1): 30-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24557631

RESUMO

Estrogenic compounds include endogenous estrogens such as estradiol as well as soybean isoflavones, such as daidzein and its metabolite equol, which are known phytoestrogens that prevent osteoporosis in postmenopausal women. Indeed, mineralization of MC3T3-E1 cells, a murine osteoblastic cell line, was significantly decreased in medium containing fetal bovine serum treated with charcoal-dextran to deplete endogenous estrogens, but estradiol and these soybean isoflavones dose-dependently restored the differentiation of MC3T3-E1 cells; equol was tenfold more effective than daidzein. These differentiation-promoting effects were inhibited by the addition of fulvestrant, which is a selective downregulator of estrogen receptors. Analysis of the expression pattern of bone-related genes by reverse transcription PCR (RT-PCR)/quantitative real-time PCR (qRT-PCR), which focused on responsiveness to the estrogen stimuli, revealed that the transcription of PACE4, a subtilisin-like proprotein convertase, was tightly linked with the differentiation of MC3T3-E1 cells induced by estrogen stimuli. Moreover, treatment with RNAi of PACE4 in MC3T3-E1 cells resulted in a drastic decrease of mineralization in the presence of estrogen stimuli. These results strongly suggest that PACE4 participates in bone formation at least in osteoblast differentiation, and estrogen receptor-mediated stimuli induce osteoblast differentiation through the upregulation of PACE4 expression.


Assuntos
Estrogênios/metabolismo , Osteoblastos/citologia , Pró-Proteína Convertases/metabolismo , Subtilisina/química , Células 3T3 , Animais , Osso e Ossos/metabolismo , Diferenciação Celular , Carvão Vegetal/química , Condrócitos/citologia , Meios de Cultura/química , Dextranos/química , Estradiol/análogos & derivados , Estradiol/química , Feminino , Fulvestranto , Isoflavonas/química , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glycine max , Transcrição Gênica
18.
FEBS Open Bio ; 4: 560-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161866

RESUMO

Sea lettuce (Ulva pertusa) is a nuisance species of green algae that is found all over the world. East-Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding preference for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai has not been studied in detail. We purified α-amylases and α-glucosidases from the digestive fluid of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai contain two α-amylases (59 and 80 kDa) and two α-glucosidases (74 and 86 kDa). The 59-kDa α-amylase, but not the 80-kDa α-amylase, was markedly activated by Ca(2+) or Cl(-). Both α-amylases degraded starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from starch was higher with 80-kDa α-amylase than with 59-kDa α-amylase. Kinetic analysis indicated that 74-kDa α-glucosidase prefers short α-1,4-linked oligosaccharide, whereas 86-kDa α-glucosidase prefers large α-1,6 and α-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa α-amylase and 74-kDa α-glucosidase than by treatment with 45-kDa cellulase and 210-kDa ß-glucosidase of A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination of two α-amylases and two α-glucosidases in the digestive fluids without membrane-bound maltase-glucoamylase and sucrase-isomaltase complexes.

19.
J Biol Chem ; 289(26): 18387-400, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24831015

RESUMO

PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser(12), Ser(66), and Ser(109) and that PCTK3 activity significantly increased via phosphorylation at Ser(12) by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ciclina A2/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Animais , Linhagem Celular , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Ciclina A2/genética , Quinases Ciclina-Dependentes/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Fosforilação , Ligação Proteica
20.
J Biochem ; 154(5): 465-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23946505

RESUMO

Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a ß-propeller domain (PD), although the role of the ß-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the ß-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the ß-PD is critical for the catalytic activity of Tb OPB.


Assuntos
Biocatálise , Ácido Glutâmico/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Trypanosoma brucei brucei/enzimologia , Estabilidade Enzimática , Ácido Glutâmico/genética , Temperatura Alta , Mutação , Estrutura Terciária de Proteína , Sais/química , Sais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA