Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neurotox Res ; 40(4): 1029-1042, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35639248

RESUMO

Despite the fact that the brain is susceptible to neurotoxicity induced by cadmium (Cd), the effects of Cd on the neuroanatomical development in the hypothalamus and regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis are not fully understood. To clarify this issue, we investigated the effects of 25 mg/kg BW/day cadmium chloride (CdCl2) on neuroanatomical alterations in the hypothalamus of prepubertal female rats. Twenty-four Sprague-Dawley rats were randomly assigned to two groups (n = 12), and CdCl2 was administered via gavage from postnatal days (PND) 21 to PND35. The results of the stereological analysis demonstrated that prepubertal exposure to Cd reduced the number of neurons and oligodendrocytes in the arcuate (ARC) and dorsomedial hypothalamus nucleus (DMH) nuclei. In contrast, Cd exposure increased the number of microglial cells in the ARC and DMH nuclei. Cd exposure decreased the mRNA levels of gonadotropin-releasing hormone (GnRH) and increased the mRNA levels of RFamide-related peptide (RFRP-3), but not kisspeptin (Kiss1) in the hypothalamus. Moreover, hormonal assay showed that Cd exposure caused a reduction in the concentration of gonadotropins: luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. Immunohistochemical expression of RFRP-3 in neuronal cell bodies demonstrated that the mean number of RFRP-3 expressing neurons in the DMH nucleus of cadmium-treated rats was dramatically higher than the vehicle group. Overall, exposure to Cd during the prepubertal period alters the population of neurons and glial cell types in the hypothalamus. Additionally, Cd exposure disrupts the regulatory mechanisms of the HPG axis.


Assuntos
Cádmio , Hipotálamo , Neuroglia , Animais , Feminino , Ratos , Cádmio/toxicidade , Hipotálamo/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo
3.
Front Neuroendocrinol ; 65: 100991, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227766

RESUMO

This paper intends to apprise the reader regarding the existing knowledge on the neuroanatomical distribution of GnIH-like peptides in in fish and amphibians in both the adult stage and during ontogenesis. The neuroanatomical distribution of GnIH-like neuropeptides appears quite different in the studied species, irrespective of the evolutionary closeness. The topology of the olfactory bulbs can affect the distribution of neurons producing the GnIH-like peptides, with a tendency to show a more extended distribution into the brains with pedunculate olfactory bulbs. Therefore, the variability of the GnIH-like system could also reflect specific adaptations rather than evolutionary patterns. The onset of GnIH expression was detected very early during development suggesting its precocious roles, and the neuroanatomical distribution of GnIH-like elements showed a generally increasing trend. This review highlights some critical technical aspects and the need to increase the number of species to be studied to obtain a complete neuroanatomical picture of the GnIH-like system.


Assuntos
Hormônios Hipotalâmicos , Neuropeptídeos , Anfíbios/metabolismo , Animais , Encéfalo/metabolismo , Gonadotropinas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo
4.
Front Neuroendocrinol ; 65: 100979, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122778

RESUMO

This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.


Assuntos
Neuropeptídeos , Estado Nutricional , Animais , Feminino , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Gravidez , Reprodução/fisiologia , Maturidade Sexual
5.
Front Neuroendocrinol ; 65: 100976, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999057

RESUMO

Neurosteroids are steroids synthesized within the central nervous system either from cholesterol or by metabolic reactions of circulating steroid hormone precursors. It has been suggested that neurosteroids exert pleiotropic activities within the central nervous system, such as organization and activation of the central nervous system and behavioral regulation. It is also increasingly becoming clear that neuropeptides exert pleiotropic activities within the central nervous system, such as modulation of neuronal functions and regulation of behavior, besides traditional neuroendocrinological functions. It was hypothesized that some of the physiological functions of neuropeptides acting within the central nervous system may be through the regulation of neurosteroids biosynthesis. Various neuropeptides reviewed in this study possibly regulate neurosteroids biosynthesis by controlling the activities of enzymes that catalyze the production of neurosteroids. It is now required to thoroughly investigate the neuropeptidergic control mechanisms of neurosteroids biosynthesis to characterize the physiological significance of this new neuroendocrinological phenomenon.


Assuntos
Neuropeptídeos , Neuroesteroides , Neuroendocrinologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Esteroides
6.
Front Neuroendocrinol ; 64: 100955, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767778

RESUMO

The discovery of gonadotropin-inhibitory hormone (GnIH) in 2000 has led to a new research era of reproductive neuroendocrinology because, for a long time, researchers believed that only gonadotropin-releasing hormone (GnRH) regulated reproduction as a neurohormone. Later studies on GnIH demonstrated that it acts as a new key neurohormone inhibiting reproduction in vertebrates. GnIH reduces gonadotropin release andsynthesis via the GnIH receptor GPR147 on gonadotropes and GnRH neurons. Furthermore, GnIH inhibits reproductive behavior, in addition to reproductive neuroendocrine function. The modification of the synthesis of GnIH and its release by the neuroendocrine integration of environmental and internal factors has also been demonstrated. Thus, the discovery of GnIH has facilitated advances in reproductive neuroendocrinology. Here, we describe the advances in reproductive neuroendocrinology driven by the discovery of GnIH, research on the effects of GnIH on reproductive physiology and behavior, and the regulatory mechanisms underlying GnIH synthesis and release.


Assuntos
Hormônios Hipotalâmicos , Animais , Hormônio Liberador de Gonadotropina , Gonadotropinas , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipotalâmicos/fisiologia , Neuroendocrinologia , Reprodução/fisiologia
7.
Front Neuroendocrinol ; 64: 100954, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757092

RESUMO

The social environment changes circulating hormone levels and expression of social behavior in animals. Social information is perceived by sensory systems, leading to cellular and molecular changes through neural processes. Peripheral reproductive hormone levels are regulated by activity in the hypothalamic-pituitary-gonadal (HPG) axis. Until the end of the last century, the neurochemical systems that convey social information to the HPG axis were not well understood. Gonadotropin-inhibitory hormone (GnIH) was the first hypothalamic neuropeptide shown to inhibit gonadotropin release, in 2000. GnIH is now regarded as a negative upstream regulator of the HPG axis, and it is becoming increasingly evident that it responds to social cues. In addition to controlling reproductive physiology, GnIH seems to modulate the reproductive behavior of animals. Here, we review studies investigating how GnIH neurons respond to social information and describe the mechanisms through which GnIH regulates social behavior.


Assuntos
Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hipotálamo/metabolismo , Interação Social , Vertebrados/metabolismo
8.
Front Neuroendocrinol ; 64: 100953, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757094

RESUMO

Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system. To clarify the sensitivity and reactivity of the GnIH system in response to stress, we summarize and critically review the available studies that investigated the effects of various stressors, such as restraint, nutritional/metabolic and social stress, on GnIH expression and/or its neuronal activity leading to altered HPG action. In this review, we focus on GnIH as the potential novel mediator responsible for stress-induced reproductive dysfunction.


Assuntos
Hormônios Hipotalâmicos , Neuropeptídeos , Gonadotropinas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Reprodução/fisiologia
9.
Front Neuroendocrinol ; 63: 100948, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678303

RESUMO

The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.


Assuntos
Hipófise , Reprodução , Animais , Peixes , Hipotálamo , Sistemas Neurossecretores
10.
Mol Biol Rep ; 48(2): 1837-1852, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566226

RESUMO

A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efeitos dos fármacos , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Reprodução/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metabolismo Energético/genética , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/metabolismo , Reprodução/genética
11.
Front Neuroendocrinol ; 61: 100900, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450199

RESUMO

The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction. (149/150).


Assuntos
Hormônios Hipotalâmicos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas , Humanos , Hipotálamo/metabolismo , Neurotransmissores
12.
Front Endocrinol (Lausanne) ; 12: 781543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095760

RESUMO

Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.


Assuntos
Regulação do Apetite/fisiologia , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Reprodução/fisiologia , Tecido Adiposo/metabolismo , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Pâncreas/metabolismo , Hormônios Tireóideos/metabolismo
13.
Gen Comp Endocrinol ; 299: 113623, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976836

RESUMO

The Holostei group occupies a critical phylogenetic position as the sister group of the Teleostei. However, little is known about holostean pituitary anatomy or brain distribution of important reproductive neuropeptides, such as the gonadotropin-inhibitory hormone (GnIH). Thus, the present study set out to characterize the structure of the pituitary and to localize GnIH-immunoreactive cells in the brain of Atractosteus tropicus from the viewpoint of comparative neuroanatomy. Juveniles of both sexes were processed for general histology and immunohistochemistry. Based on the differences in cell organization, morphology, and staining properties, the neurohypophysis and three regions in the adenohypophysis were identified: the rostral and proximal pars distalis (PPD) and the pars intermedia. This last region was found to be innervated by the neurohypophysis. This organization, together with the presence of a saccus vasculosus, resembles the general teleost pituitary organization. A vast number of blood vessels were also recognized between the infundibulum floor of the hypothalamus and the PPD, evidencing the characteristic presence of a median eminence and a portal system. However, this well-developed pituitary portal system resembles that of tetrapods. As regards the immunohistochemical localization of GnIH, we found four GnIH-immunoreactive (GnIH-ir) populations in three hypothalamic nuclei (suprachiasmatic, retrotuberal, and tuberal nuclei) and one in the diencephalon (prethalamic nucleus), as well as a few scattered neurons throughout the olfactory bulbs, the telencephalon, and the intersection between them. GnIH-ir fibers showed a widespread distribution over almost all brain regions, suggesting that GnIH function is not restricted to reproduction only. In conclusion, the present study describes, for the first time, the pituitary of A. tropicus and the neuroanatomical localization of GnIH in a holostean fish that exhibits a similar distribution pattern to that of teleosts and other vertebrates, suggesting a high degree of phylogenetic conservation of this system.


Assuntos
Encéfalo/metabolismo , Peixes/metabolismo , Hormônios Hipotalâmicos/metabolismo , Animais , Filogenia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32849313

RESUMO

Similar to the adrenal glands, gonads, and placenta, vertebrate brains also produce various steroids, which are known as "neurosteroids." Neurosteroids are mainly synthesized in the hippocampus, hypothalamus, and cerebellum; however, it has recently been discovered that in birds, the pineal gland, a photosensitive region in the brain, produces more neurosteroids than other brain regions. A series of experiments using molecular and biochemical techniques have found that the pineal gland produces various neurosteroids, including sex steroids, de novo from cholesterol. For instance, allopregnanolone and 7α-hydroxypregnenolone are actively produced in the pineal gland, unlike in other brain regions. Pineal 7α-hydroxypregnenolone, an up-regulator of locomotion, enhances locomotor activity in response to light stimuli in birds. Additionally, pineal allopregnanolone acts on Purkinje cells in the cerebellum and prevents neuronal apoptosis within the developing cerebellum in juvenile birds. Furthermore, exposure to light during nighttime hours can cause loss of diurnal variations of pineal allopregnanolone synthesis during early posthatch life, eventually leading to cerebellar Purkinje cell death in juvenile birds. In light of these new findings, this review summarizes the biosynthesis and physiological functions of pineal neurosteroids. Given that the circadian rhythms of individuals in modern societies are constantly interrupted by artificial light exposure, these findings in birds, which are excellent model diurnal animals, may have direct implications for addressing problems regarding the mental health and brain development of humans.


Assuntos
Fenômenos Fisiológicos Celulares , Atividade Motora , Neuroesteroides/metabolismo , Glândula Pineal/metabolismo , Animais , Humanos , Glândula Pineal/citologia
15.
Mol Cell Endocrinol ; 514: 110914, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32535039

RESUMO

Based on extensive studies on gonadotropin-releasing hormone (GnRH) it was assumed that GnRH is the only hypothalamic neurohormone regulating gonadotropin release in vertebrates. In 2000, however, Tsutsui's group discovered gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that inhibits gonadotropin release, in quail. Subsequent studies by Tsutsui's group demonstrated that GnIH is conserved among vertebrates, acting as a new key neurohormone regulating reproduction. GnIH inhibits gonadotropin synthesis and release through actions on gonadotropes and GnRH neurons via GnIH receptor, GPR147. Thus, GnRH is not the sole hypothalamic neurohormone controlling vertebrate reproduction. The following studies by Tsutsui's group have further demonstrated that GnIH has several important functions in addition to the control of reproduction. Accordingly, GnIH has drastically changed our understanding about reproductive neuroendocrinology. This review summarizes the discovery of GnIH, progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction.


Assuntos
Pesquisa Biomédica/tendências , Antagonistas de Hormônios/isolamento & purificação , Sistemas Neurossecretores/fisiologia , Neurotransmissores/fisiologia , Reprodução/fisiologia , Animais , Comportamento Animal/fisiologia , Gonadotropinas/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Humanos , Hormônios Hipotalâmicos/isolamento & purificação , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipotalâmicos/fisiologia , Neuropeptídeos/isolamento & purificação , Neurotransmissores/isolamento & purificação , Neurotransmissores/farmacologia , Vertebrados
16.
FASEB Bioadv ; 2(3): 149-159, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32161904

RESUMO

The brain produces steroids de novo from cholesterol, so-called "neurosteroids." The Purkinje cell, a cerebellar neuron, was discovered as a major site of the biosynthesis of neurosteroids including sex steroids, such as progesterone, from cholesterol in the brain. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on the Purkinje cell to prevent cell death of this neuron. Recently, the pineal gland was discovered as an important site of the biosynthesis of neurosteroids. Allopregnanolone, a major pineal neurosteroid, acts on the Purkinje cell for the survival of this neuron by suppressing the expression of caspase-3, a crucial mediator of apoptosis. This review summarizes the discovery of cerebellar and pineal allopregnanolone and its neuroprotective action on Purkinje cells.

17.
J Exp Zool A Ecol Integr Physiol ; 333(4): 214-229, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039555

RESUMO

The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image. This study showed the effect of putrescine on the morphology of ovary, uterus, and the expression of the steroidogenic acute regulatory protein in the ovary. This study showed GnIH expression was intense during the diestrus and moderate during proestrus and estrus, whereas mild staining during the metestrus. The study further showed that putrescine supplementation to adult female rats increased both GnRH-I expression in the hypothalamus as well as the GnRH-I levels in circulation. The study, for the first time, also showed that putrescine supplementation decreased the expression and release of GnIH. These effects of upregulating GnRH-I expression and downregulating GnIH expression were confirmed by in vitro experiments using GT1-7 cells. Putrescine supplementation also increased the gonadotropin levels in the serum. To summarize, putrescine can regulate the hypothalamic-pituitary-gonadal axis by increasing the GnRH-I, luteinizing hormone, and follicle-stimulating hormone levels and suppressing GnIH levels. This is the first report showing the simultaneous effects of putrescine on the regulation of both GnRH-I and GnIH in the hypothalamus.


Assuntos
Glicoproteínas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/fisiologia , Putrescina/farmacologia , Animais , Linhagem Celular , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Hormônio Foliculoestimulante , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Hormônio Liberador de Gonadotropina/genética , Hormônios Hipotalâmicos/genética , Hormônio Luteinizante , Neurônios/metabolismo , Ovário/efeitos dos fármacos , Transporte Proteico , Ratos , Ratos Wistar , Útero/efeitos dos fármacos
18.
Cell Tissue Res ; 380(1): 115-127, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31848753

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a newly discovered hypothalamic RFamide peptide that influences reproduction by regulating brain and pituitary neuroendocrine functions in vertebrates. We report here for the first time, the ontogenetic description of GnIH-like immunoreactivity in the brain, olfactory system, and pituitary of the frog, Pelophylax esculentus. GnIH-like immunoreactive (GnIH-ir) elements were first observed in larvae at stage 24 in the olfactory mucosa, ventral telencephalon, and diencephalon. GnIH-ir-positive staining progressively increased in frequency and intensity during larval growth and other ir perikarya appeared in the medial septum, anterior commissure, dorsal hypothalamus, and posterior tuberculum. A decline in GnIH-ir neurons was seen along the olfactory/vomeronasal/terminal nerve complex in the stages following the pre- and prometamorphosis, while other GnIH-ir neurons showed positivity in the ventromedial surface of the olfactory bulbs and into the habenular nuclei, but the latter are no longer observed in the following stages of development. The anterior-posterior axis in several brain areas, along with the median eminence and pars intermedia of the hypophysis had the appearance of GnIH-ir fibers from early stages, with a progressive increase in the number till metamorphosis in all major subdivisions of the brain. After premetamorphosis, GnIH-ir fibers arising from labeled neurons in the suprachiasmatic nucleus could be seen contacting the ventricular lumen. The transient appearance of GnIH-ir elements in the olfactory system may hint at an olfactory placode origin in the extracranial region. The distribution of GnIH in several brain regions throughout development suggests important involvement of GnIH in multiple brain functions during development.


Assuntos
Encéfalo/embriologia , Glicoproteínas/metabolismo , Rana esculenta/embriologia , Animais
19.
Elife ; 82019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566568

RESUMO

The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ritmo Circadiano , Luz , Glândula Pineal/fisiologia , Pregnanolona/metabolismo , Animais , Encéfalo/citologia , Células COS , Morte Celular , Galinhas , Chlorocebus aethiops , Masculino , Estimulação Luminosa , Células de Purkinje/citologia
20.
Reprod Med Biol ; 18(3): 225-233, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31312100

RESUMO

BACKGROUND: Gonadotropin-inhibitory hormone (GnIH) was discovered in the Japanese quail brain in 2000 as a hypothalamic neuropeptide that suppresses luteinizing hormone release from cultured quail anterior pituitary. METHODS: The authors investigated the existence of mammalian orthologous peptides to GnIH and their physiological functions in the following 19 years of research. MAIN FINDINGS: Mammals have orthologous peptide to GnIH, often described RFamide-related peptide, expressed in the hypothalamus and gonads. Mammalian GnIH may also suppress gonadotropin synthesis and release by suppressing gonadotropin-releasing hormone (GnRH) synthesis and release in addition to directly suppressing gonadotropin synthesis and release from the pituitary. Mammalian GnIH may also suppress kisspeptin, a stimulator of GnRH, release. Mammalian GnIH is also expressed in the testis and ovary and suppresses gametogenesis and sex steroid production acting in an autocrine/paracrine manner. Thus, mammalian GnIH may act at all levels of the hypothalamic-pituitary-gonadal axis to suppress reproduction. GnIH may be involved in the regulation of puberty, estrous or menstrual cycle, seasonal reproduction, and stress responses. CONCLUSION: Studies suggest that mammalian GnIH is an important neuroendocrine suppressor of reproduction in mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA