Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 16: 291-299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374956

RESUMO

Background and purpose: Traumatic brain injury (TBI) and its consequences remain great challenges for neurology. Consequences of TBI are associated with various alterations in the brain but little is known about long-term changes of epigenetic DNA methylation patterns. Moreover, nothing is known about potential treatments that can alter these epigenetic changes in beneficial ways. Therefore, we have examined myo-inositol (MI), which has positive effects on several pathological conditions. Methods: TBI was induced in mice by controlled cortical impact (CCI). One group of CCI animals received saline injections for two months (TBI+SAL), another CCI group received MI treatment (TBI+MI) for the same period and one group served as a sham-operated control. Mice were sacrificed 4 months after CCI and changes in DNA methylome and transcriptomes were examined. Results: For the first time we: (i) provide comprehensive map of long-term DNA methylation changes after CCI in the hippocampus; (ii) identify differences by methylation sites between the groups; (iii) characterize transcriptome changes; (iv) provide association between DNA methylation sites and gene expression. MI treatment is linked with upregulation of genes covering 33 biological processes, involved in immune response and inflammation. In support of these findings, we have shown that expression of BATF2, a transcription factor involved in immune-regulatory networks, is upregulated in the hippocampus of the TBI+MI group where the BATF2 gene is demethylated. Conclusion: TBI is followed by long-term epigenetic and transcriptomic changes in hippocampus. MI treatment has a significant effect on these processes by modulation of immune response and biological pathways of inflammation.

2.
Biology (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37508386

RESUMO

Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal MECP2 (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7-18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular sleep and breathing, motor dysfunction, hand stereotypies, and seizures. The complex pathology involves mitochondrial structure and function. Mecp2-/y hippocampal astrocytes show increased mitochondrial contents. Neurons and glia suffer from oxidative stress, a lack of ATP, and increased hypoxia vulnerability. This spectrum of changes demands comprehensive molecular studies of mitochondria to further define their pathogenic role in RTT. Therefore, we applied a comparative proteomic approach for the first time to study the entity of mitochondrial proteins in a mouse model of RTT. In the neocortex and hippocampus of symptomatic male mice, two-dimensional gel electrophoresis and subsequent mass-spectrometry identified various differentially expressed mitochondrial proteins, including components of respiratory chain complexes I and III and the ATP-synthase FoF1 complex. The NADH-ubiquinone oxidoreductase 75 kDa subunit, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, NADH dehydrogenase [ubiquinone] flavoprotein 2, cytochrome b-c1 complex subunit 1, and ATP synthase subunit d are upregulated either in the hippocampus alone or both the hippocampus and neocortex of Mecp2-/y mice. Furthermore, the regulatory mitochondrial proteins mitofusin-1, HSP60, and 14-3-3 protein theta are decreased in the Mecp2-/y neocortex. The expressional changes identified provide further details of the altered mitochondrial function and morphology in RTT. They emphasize brain-region-specific alterations of the mitochondrial proteome and support the notion of a metabolic component of this devastating disorder.

3.
Int Microbiol ; 25(4): 745-758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35768673

RESUMO

Cesium (Cs+) enters environments largely because of global release into the environment from weapons testing and accidents such as Fukushima Daiichi and Chernobyl nuclear waste. Even at low concentrations, Cs+ is highly toxic to ecological receptors because of its physicochemical similarity to macronutrient potassium (K+). We investigated the uptake and accumulation of Cs+ by Arthrobacter globiformis strain 151B in reference to three similar alkali metal cations rubidium (Rb+), sodium (Na+), and potassium (K+). The impact of hexavalent chromium (Cr+6) as a co-contaminant was also evaluated. A. globiformis 151B accumulated Cs+ and Cr6+ in a time-dependent fashion. In contrast, the uptake and accumulation of Rb+ did not exhibit any trends. An exposure to Cs+, Rb+, and Cr+6 triggered a drastic increase in K+ and Na+ uptake by the bacterial cells. That was followed by the efflux of K+ and Na+, suggesting a Cs+ "substitution." Two-dimensional gel-electrophoresis of bacterial cell proteomes with the following mass-spectrometry of differentially expressed bands revealed that incubation of bacterial cells with Cs+ induced changes in the expression of proteins involved in the maintenance of cellular homeostasis and reactive oxygen species removal. The ability of A. globiformis 151B to mediate the uptake and accumulation of cesium and hexavalent chromium suggests that it possesses wide-range bioremediation potential.


Assuntos
Metais Alcalinos , Resíduos Radioativos , Álcalis , Arthrobacter , Biodegradação Ambiental , Cátions/análise , Césio/análise , Césio/metabolismo , Cromo , Potássio/análise , Potássio/metabolismo , Proteoma , Resíduos Radioativos/análise , Espécies Reativas de Oxigênio , Rubídio/análise , Rubídio/metabolismo , Sódio/metabolismo
4.
Exp Brain Res ; 240(5): 1589-1604, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35357523

RESUMO

The hippocampus, which provides cognitive functions, has been shown to become highly vulnerable during aging. One important modulator of the hippocampal neural network is the medial septum (MS). The present study attempts to determine how age-related mnemonic dysfunction is associated with neurochemical changes in the septohippocampal (SH) system, using behavioral and immunochemical experiments performed on young-adult, middle-aged and aged rats. According to these behavioral results, the aged and around 52.8% of middle-aged rats (within the "middle-aged-impaired" sub-group) showed both impaired spatial reference memory in the Morris water maze and habituation in the open field. Immunohistochemical studies revealed a significant decrease in the number of MS choline acetyltransferase immunoreactive cells in the aged and all middle-aged rats, in comparison to the young; however the number of gamma-aminobutyric acid-ergic (GABAergic) parvalbumin immunoreactive cells was higher in middle-aged-impaired and older rats compared to young and middle-aged-unimpaired rats. Western Blot analysis moreover showed a decrease in the level of expression of cholinergic, GABAergic and glutamatergic receptors in the hippocampus of middle-aged-impaired and aged rats in contrast to middle-aged-unimpaired and young rats. The present results demonstrate for the first time that a decrease in the expression level of hippocampal receptors in naturally aged rats with impaired cognitive abilities occurs in parallel with an increase in the number of GABAergic neurons in the MS, and it highlights the particular importance of inhibitory signaling in the SH network for memory function.


Assuntos
Hipocampo , Transtornos da Memória , Animais , Colinérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto/fisiologia , Neurônios/metabolismo , Ratos , Receptores de Neurotransmissores/metabolismo , Memória Espacial , Ácido gama-Aminobutírico/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163126

RESUMO

Epilepsy is a severe neurological disease characterized by spontaneous recurrent seizures (SRS). A complex pathophysiological process referred to as epileptogenesis transforms a normal brain into an epileptic one. Prevention of epileptogenesis is a subject of intensive research. Currently, there are no clinically approved drugs that can act as preventive medication. Our previous studies have revealed highly promising antiepileptogenic properties of a compound-myo-inositol (MI) and the present research broadens previous results and demonstrates the long-term disease-modifying effect of this drug, as well as the amelioration of cognitive comorbidities. For the first time, we show that long-term treatment with MI: (i) decreases the frequency and duration of electrographic SRS in the hippocampus; (ii) has an ameliorating effect on spatial learning and memory deficit associated with epileptogenesis, and (iii) attenuates cell loss in the hippocampus. MI treatment also alters the expression of the glial fibrillary acidic protein, LRRC8A subunit of volume-regulated anion channels, and protein tyrosine phosphatase receptor type R, all expected to counteract the epileptogenesis. All these effects are still present even 4 weeks after MI treatment ceased. This suggests that MI may exert multiple actions on various epileptogenesis-associated changes in the brain and, therefore, could be considered as a candidate target for prevention of epileptogenesis.


Assuntos
Epilepsia/tratamento farmacológico , Inositol/farmacologia , Ácido Caínico/toxicidade , Transtornos da Memória/tratamento farmacológico , Convulsões/tratamento farmacológico , Complexo Vitamínico B/farmacologia , Animais , Antinematódeos/toxicidade , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/patologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/patologia
6.
Neuroreport ; 31(5): 399-405, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101952

RESUMO

Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. Criteria used to infer that a change following training is learning-related have been formulated and published. Cognin (protein disulphide isomerase) is one of several identified plasma membrane and mitochondrial proteins that are upregulated in a learning-related way 24 hours after training. Since virtually nothing is known about the cognin interactome, we have used immunoaffinity chromatography and mass spectrometry to identify proteins that interact with cognin in the cytoplasmic and plasma membrane-mitochondrial fractions. As the learning-related upregulation of cognin has been shown to occur in the plasma membrane-mitochondrial fraction and not in the cytoplasmic fraction, we studied the effect of training on three cognin-interacting partners in the plasma membrane-mitochondrial fraction: the b5 subunit of mitochondrial ATP synthase and the alpha-2 and alpha-3 subunits of sodium-potassium ATPase. Learning-related upregulation was found in the left intermediate medial mesopallium 24 hours after training for the b5 subunit of mitochondrial ATP synthase and the alpha-2 subunit of sodium-potassium ATPase. The hemispheric asymmetry revealed here is consistent with the predominance of many other learning-related effects in the left intermediate medial mesopallium. The alpha-2 subunit of sodium-potassium ATPase is mainly expressed in astrocytes, supporting a role for these glial cells in memory.


Assuntos
Fixação Psicológica Instintiva/fisiologia , Aprendizagem/fisiologia , Proteínas de Membrana/metabolismo , Memória/fisiologia , Membranas Mitocondriais/metabolismo , Animais , Proteínas Mitocondriais/metabolismo , Isomerases de Dissulfetos de Proteínas/farmacologia
7.
Biomed Res Int ; 2019: 4518160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941363

RESUMO

Epilepsy is one of the most devastating neurological diseases and despite significant efforts there is no cure available. Occurrence of spontaneous seizures in epilepsy is preceded by numerous functional and structural pathophysiological reorganizations in the brain-a process called epileptogenesis. Treatment strategies targeting this process may be efficient for preventing spontaneous recurrent seizures (SRS) in epilepsy, or for modification of disease progression. We have previously shown that (i) myoinositol (MI) pretreatment significantly decreases severity of acute seizures (status epilepticus: SE) induced by kainic acid (KA) in experimental animals and (ii) that daily post-SE administration of MI for 4 weeks prevents certain biochemical changes triggered by SE. However it was not established whether such MI treatment also exerts long-term effects on the frequency of SRS. In the present study we have shown that, in KA-induced post-SE epilepsy model in rats, MI treatment for 28 days reduces frequency and duration of behavioural SRS not only during the treatment, but also after its termination for the following 4 weeks. Moreover, MI has significant effects on molecular changes in the hippocampus, including mi-RNA expression spectrum, as well as mRNA levels of sodium-MI transporter and LRRC8A subunit of the volume regulated anionic channel. Taken together, these data suggest that molecular changes induced by MI treatment may counteract epileptogenesis. Thus, here we provide data indicating antiepileptogenic properties of MI, which further supports the idea of developing new antiepileptogenic and disease modifying drug that targets MI system.


Assuntos
Comportamento Animal , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Inositol/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Epilepsia/terapia , Inositol/farmacologia , Ácido Caínico , Fatores de Tempo
8.
Biomed Res Int ; 2016: 2794096, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642592

RESUMO

Identification of compounds preventing or modifying the biochemical changes that underlie the epileptogenesis process and understanding the mechanism of their action are of great importance. We have previously shown that myoinositol (MI) daily treatment for 28 days prevents certain biochemical changes that are triggered by kainic acid (KA) induced status epilepticus (SE). However in these studies we have not detected any effects of MI on the first day after SE. In the present study we broadened our research and focused on other molecular and morphological changes at the early stages of SE induced by KA and effects of MI treatment on these changes. The increase in the amount of voltage-dependent anionic channel-1 (VDAC-1), cofilin, and caspase-3 activity was observed in the hippocampus of KA treated rats. Administration of MI 4 hours later after KA treatment abolishes these changes, whereas diazepam treatment by the same time schedule has no significant influence. The number of neuronal cells in CA1 and CA3 subfields of hippocampus is decreased after KA induced SE and MI posttreatment significantly attenuates this reduction. No significant changes are observed in the neocortex. Obtained results indicate that MI posttreatment after KA induced SE could successfully target the biochemical processes involved in apoptosis, reduces cell loss, and can be successfully used in the future for translational research.


Assuntos
Inositol/farmacologia , Inositol/uso terapêutico , Neurônios/patologia , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Animais , Western Blotting , Calibragem , Caspase 3/metabolismo , Contagem de Células , Hipocampo/patologia , Ácido Caínico , Masculino , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
9.
Front Public Health ; 3: 239, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528469

RESUMO

Yersinia pestis, the causative agent of plague, is a highly virulent bacterium responsible for millions of human deaths throughout history. In the last decade, two natural plague foci have been described in the Republic of Georgia from which dozens of Y. pestis strains have been isolated. Analyses indicate that there are genetic differences between these strains, but it is not known if these differences are also reflected in protein expression. We chose four strains of Y. pestis (1390, 1853, 2944, and 8787) from the National Center for Disease Control and Public Health collection for proteomic studies based on neighbor-joining tree genetic analysis and geographical loci of strain origin. Proteomic expression was analyzed using two-dimensional gel electrophoresis and mass spectrometry. Select Y. pestis strains were grown under different physiological conditions and their proteomes were compared: (1) 28°C without calcium; (2) 28°C with calcium; (3) 37°C without calcium; and (4) 37°C with calcium. Candidate proteins were identified and the differences in expression of F1 antigen, tellurium-resistance protein, and outer membrane protein C, porin were validated by Western blotting. The in vitro cytotoxicity activity of these strains was also compared. The results indicate that protein expression and cytotoxic activities differ significantly among the studied strains; these differences could contribute to variations in essential physiological functions in these strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA