Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(27): 275201, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30901764

RESUMO

An AlGaN/GaN multi-shell structure on a GaN nanorod (NR) is formed by using the self-catalytic pulsed growth process of metalorganic chemical vapor deposition with Ga and Al/N supplies in the first and second half-cycles, respectively. With Al supply, a thin AlGaN layer is precipitated near the end of a growth cycle to form the AlGaN/GaN structure. Because of the lower chemical potential for GaN nucleation, when compared with AlN, a GaN layer is first deposited in a growth cycle. AlGaN is not precipitated until the AlN nucleation probability becomes higher when the catalytic Ga droplet is almost exhausted. Because the Al adatoms on the NR sidewalls hinder the upward migration of Ga adatoms for contributing to the Ga droplet at the NR top, the size of the Ga droplet decreases along growth cycle leading to the decrease of GaN layer thickness at the top until a steady state is reached. In this process, the slant facet of an NR changes from the (1-102)-plane into (1-101)-plane. To interpret the observed growth behaviors, formulations are derived for theoretically modeling the AlN nucleation probability, NR height increment in each growth cycle, and the time of exhausting the Ga droplet in a cycle.

2.
Nanotechnology ; 30(2): 025101, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30378566

RESUMO

For tumor treatment, compared with gold nanoparticles (NPs) of other geometries, a porous gold NP (PGNP) has the advantages of stronger localized surface plasmon resonance (LSPR) due to the pore nanostructures and a larger surface area to link with more drug or photosensitizer (PS) molecules for more effective delivery into cancer cells. Different from the chemical synthesis methods, in this paper we demonstrate the fabrication procedures of PGNP based on shaped Au/Ag deposition on a Si substrate and elucidate the advantageous features. PGNPs fabricated under different conditions, including different deposited Au/Ag content ratios and different alloying annealing temperatures, are compared for optimizing the fabrication condition in terms of LSPR wavelength, PS linkage capability, and cancer cell damage efficiency. It is found that within the feasible fabrication parameter ranges, the Au/Ag content ratio of 3:7 and alloying annealing temperature at 600 °C are the optimized conditions. In comparing with widely used gold NPs of other geometries, PGNP fabricated under the optimized conditions can be used for achieving a significantly higher linked PS molecule number per unit gold weight.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neoplasias/patologia , Morte Celular , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas/ultraestrutura , Porosidade , Compostos de Silício/química , Dióxido de Silício/química , Prata/química
3.
Opt Lett ; 43(22): 5631-5634, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439912

RESUMO

It is usually believed that surface plasmon (SP) coupling is practically useful only for improving the performance of a light-emitting diode (LED) with a low intrinsic internal quantum efficiency (IQE). In this Letter, we demonstrate that the performance of a commercial-quality blue LED with a high IQE (>80%) can still be significantly improved through SP coupling based on a surface Ag nanoparticle (NP) structure. The performance improvement of such an LED is achieved by increasing the Mg doping concentration in its p-AlGaN electron blocking layer to enhance the hole injection efficiency such that the p-GaN layer thickness can be significantly reduced without sacrificing its electrical property. In this situation, the distance between surface Ag NPs and quantum wells is decreased and hence SP coupling strength is increased. By reducing the distance between the surface Ag NPs and the top quantum well to 66 nm, the IQE can be increased to almost 90% (an ∼11% enhancement) and the electroluminescence intensity can be enhanced by ∼24%.

4.
Opt Express ; 26(7): 9205-9219, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715875

RESUMO

A metal grating on top of a light-emitting diode (LED) with a designed grating period for compensating the momentum mismatch can enhance the surface plasmon polariton (SPP) coupling effect with the quantum wells (QWs) to improve LED performance. Here, we demonstrate the experimental results showing that the induced localized surface plasmon (LSP) resonance on such a metal grating can dominate the QW coupling effect for improving LED performance, particularly when grating ridge height is large. The finding is illustrated by fabricating Ag gratings on single-QW, green-emitting LEDs of different p-type thicknesses with varied grating ridge height and width such that the distance between the grating ridge tip and the QW can be controlled. Reflection spectra of the Ag grating structures are measured and simulated to identify the SPP or LSP resonance behaviors at the QW emission wavelength. The measured results of LED performances show that in the LED samples under study, both SPP and LSP couplings can lead to significant enhancements of internal quantum efficiency and electroluminescence intensity. At the designated QW emission wavelength, with a grating period theoretically designed for momentum matching, the LSP coupling effect is stronger, when compared with SPP coupling.

5.
Opt Express ; 25(18): 21526-21536, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041450

RESUMO

The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 µm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.

6.
Nanotechnology ; 28(4): 045203, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27981946

RESUMO

A theoretical model for evaluating the height-dependent variations of quantum well (QW) thickness and In concentration in a sidewall QW of a single- or two-section GaN nanorod (NR) is proposed. By reasonably choosing modeling parameter values, the obtained numerical results are quite consistent with the available experimental data. In particular, the model clearly demonstrates the increasing trends of QW thickness and In concentration with height on a sidewall of a single-section NR. Also, it successfully explains the larger QW thickness and higher In concentration in the upper uniform section, when compared with the lower uniform section, in a two-section NR. In this model, three III-group adatom supply sources are considered for sidewall deposition on a single-section NR, including the downward diffusion of adatoms collected on the slant facets at the NR top, the upward diffusion of adatoms collected on the NR base, and the direct adsorption of atoms on the sidewall from the vapor phase. For a two-section NR, the upward and downward diffusions of adatoms collected on the slant facets of the tapering section between the two uniform sections serve as extra adatom supply sources.

7.
Nanotechnology ; 27(2): 025303, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26630269

RESUMO

The growth of regularly patterned multi-section GaN nanorod (NR) arrays based on a pulsed growth technique with metalorganic chemical vapor deposition is demonstrated. Such an NR with multiple sections of different cross-sectional sizes is formed by tapering a uniform cross section to another through stepwise decreasing of the Ga supply duration to reduce the size of the catalytic Ga droplet. Contrast line structures are observed in either a scanning electron microscopy or transmission electron microscopy image of an NR. Such a contrast line-marker corresponds to a thin Ga-rich layer formed at the beginning of GaN precipitation of a pulsed growth cycle and illustrates the boundary between two successive growth cycles in pulsed growth. By analyzing the geometry variation of the contrast line-markers, the morphology evolution in the growth of a multi-section NR, including a tapering process, can be traced. Such a morphology variation is controlled by the size of the catalytic Ga droplet and its coverage range on the slant facets at the top of an NR. The comparison of emission spectra between single-, two-, and three-section GaN NRs with sidewall InGaN/GaN quantum wells indicates that a multi-section NR can lead to a significantly broader sidewall emission spectrum.

8.
Opt Express ; 23(25): 32274-88, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26699018

RESUMO

The combined effects of a few mechanisms for emission efficiency enhancement produced in the overgrowth of the transparent conductor layer of Ga-doped ZnO (GaZnO) on a surface Ag-nanoparticle (NP) coated light-emitting diode (LED), including surface plasmon (SP) coupling, current spreading, light extraction, and contact resistivity reduction, are demonstrated. With a relatively higher GaZnO growth temperature (350 °C), melted Ag NPs can be used as catalyst for forming GaZnO nanoneedles (NNs) through the vapor-liquid-solid growth mode such that light extraction efficiency can be increased. Meanwhile, residual Ag NPs are buried in a simultaneously grown GaZnO layer for inducing SP coupling. With a relatively lower GaZnO growth temperature (250 °C), all the Ag NPs are preserved for generating a stronger SP coupling effect. By using a thin annealed GaZnO interlayer on p-GaN before Ag NP fabrication, the contact resistivity at the GaZnO/p-GaN interface and hence the overall device resistance can be reduced. Although the use of this interlayer blue-shifts the localized surface plasmon resonance peak of the fabricated Ag NPs from the quantum well emission wavelength of the current study (535 nm) such that the SP coupling effect becomes weaker, it is useful for enhancing the SP coupling effect in an LED with a shorter emission wavelength.

9.
Opt Express ; 23(17): 21919-30, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368168

RESUMO

The growth of a two-section, core-shell, InGaN/GaN quantum-well (QW) nanorod- (NR-) array light-emitting diode device based on a pulsed growth technique with metalorganic chemical vapor deposition is demonstrated. A two-section n-GaN NR is grown through a tapering process for forming two uniform NR sections of different cross-sectional sizes. The cathodoluminescence (CL), photoluminescence (PL), and electrolumines-cence (EL) characterization results of the two-section NR structure are compared with those of a single-section NR sample, which is prepared under the similar condition to that for the first uniform NR section of the two-section sample. All the CL, PL, and EL spectra of the two-section sample (peaked between 520 and 525 nm) are red-shifted from those of the single-section sample (peaked around 490 nm) by >30 nm in wavelength. Also, the emitted spectral widths of the two-section sample become significantly larger than their counterparts of the single-section sample. The PL spectral full-width at half-maximum increases from ~37 to ~61 nm. Such variations are attributed to the higher indium incorporation in the sidewall QWs of the two-section sample due to the stronger strain relaxation in an NR section of a smaller cross-sectional size and the more constituent atom supply from the larger gap volume between neighboring NRs.

10.
Opt Express ; 23(12): 15491-503, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193529

RESUMO

The emission behaviors of four light-emitting diodes (LEDs) of different substrate structures, including a lateral LED grown on sapphire, a vertical LED wafer-bonded onto Si (111), a bendable LED Ag-epoxied onto a flat metal, and another bendable LED Ag-epoxied onto a metal of a curved surface, under different duty cycles of current injection are compared. Their different variation trends of emission behavior with injection duty cycle are attributed to the different thermally-induced strain conditions in the epitaxial layers, which are controlled by their substrate structures, in increasing injection duty cycle or current level. The results of Raman scattering measurements during LED operation show that a stronger tensile strain is generated under heating for reducing the quantum-confined Stark effect and hence increasing emission efficiency when the epitaxial layer is not tightly bonded onto a hard substrate. Such a behavior is particularly stronger when the epitaxial layer is bent.

11.
ACS Appl Mater Interfaces ; 7(19): 10525-33, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25927161

RESUMO

The molecular beam epitaxy growth of highly degenerate Ga-doped ZnO (GaZnO) nanoneedles (NNs) based on the vapor-liquid-solid (VLS) growth mode using Ag nanoparticles (NPs) as the growth catalyst is demonstrated. It is shown that when the growth substrate temperature is sufficiently high, a portion of a Ag NP can be melted for serving as the catalyst to precipitate GaZnO on the residual Ag NP and form a GaZnO NN. Record-low turn-on and threshold electric fields in the field emission test of the grown GaZnO NNs are observed. Also, a record-high field enhancement factor in field emission is calibrated. Such superior field emission performances are attributed to a few factors, including (1) the low work function and high conductivity of the grown GaZnO NNs due to highly degenerate Ga doping, (2) the sharp-pointed geometry of the vertically aligned GaZnO NNs, (3) the Ag doping in VLS precipitation of GaZnO for further reducing NN resistivity, and (4) the residual small Ag NP at the NN tip for making the tip even sharper and tip conductivity even higher.

12.
Opt Express ; 23(6): 8150-61, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837152

RESUMO

The modulation bandwidths of the light-emitting diodes (LEDs) of different mesa sizes with and without surface plasmon (SP) coupling effect are compared. Due to the significant increase of carrier decay rate, within the size range of LED square-mesa from 60 through 300 micron and the injected current-density range from 139 through 1667 A/cm², the SP coupling can lead to the enhancement of modulation bandwidth by 44-48%, independent of the variations of LED mesa size or injected current level. The enhancement ratios of modulation bandwidth of the samples with SP coupling with respect to those of the samples without SP coupling are lower than the corresponding ratios of the square-root of photoluminescence decay rate due to the increases of their RC time constants (the product of device resistance and capacitance). The increases of the RC time constants in the samples with SP coupling are attributed to the increases of their device resistance levels when the Ag nanoparticles and GaZnO dielectric interlayer are added to the LED surface for effectively inducing SP coupling.

13.
Opt Express ; 22(14): 17303-19, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090544

RESUMO

To achieve green emission from the sidewall non-polar quantum wells (QWs) of a GaN nanorod (NR) light-emitting diode, regularly patterned InGaN/GaN QW NR arrays are grown under various growth conditions of indium supply rate, QW growth temperature, and QW growth time for comparing their emission wavelength variations of the top-face c-plane and sidewall m-plane QWs based on photoluminescence and cathodoluminescence (CL) measurements. Although the variation trends of QW emission wavelength by changing those growth conditions in the NR structure are similar to those in the planar structure, the emission wavelength range of the QWs on an NR is significantly shorter than that in a planar structure under the same growth conditions. Under the growth conditions for a longer NR QW emission wavelength, the difference of emission wavelength between the top-face and sidewall QWs is smaller. Also, the variation range of the emission wavelength from the sidewall QWs over different heights on the sidewall becomes larger. On the other hand, strain state analysis based on transmission electron microscopy is undertaken to calibrate the average QW widths and average indium contents in the two groups of QW of an NR. The variation trends of the calibrated QW widths and indium contents are consistent with those of the CL emission wavelengths from various portions of NR QWs.

14.
Opt Express ; 22 Suppl 3: A842-56, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922391

RESUMO

The enhancement of output intensity, the generation of polarized output, and the reduction of the efficiency droop effect in a surface plasmon (SP) coupled vertical light-emitting diode (LED) with an Ag nano-grating structure located between the p-GaN layer and the wafer bonding metal for inducing SP coupling with the InGaN/GaN quantum wells (QWs) are demonstrated. In fabricating the vertical LED, the patterned sapphire substrate is removed with a photoelectrochemical liftoff technique. Based on the reflection measurement from the metal grating structure and the numerical simulation result, it is found that the localized surface plasmon (LSP) resonance induced around the metal grating crest plays the major role in the SP-QW coupling process although a hybrid mode of LSP and surface plasmon polariton can be generated in the coupling process. By adding a surface grating structure to the SP-coupled vertical LED on the n-GaN side, the output intensity is further enhanced, the output polarization ratio is further increased, and the efficiency droop effect is further suppressed.

15.
Opt Express ; 22 Suppl 7: A1799-809, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607494

RESUMO

The growth and process of a regularly patterned nanorod (NR)- light-emitting diode (LED) array with its emission from sidewall non-polar quantum wells (QWs) are demonstrated. A pyramidal un-doped GaN structure is intentionally formed at the NR top for minimizing the current flow through this portion of the NR such that the injection current can be effectively guided to the sidewall m-plane InGaN/GaN QWs for emission excitation by a conformal transparent conductor (GaZnO). The injected current density at a given applied voltage of the NR LED device is similar to that of a planar c-plane or m-plane LED. The blue-shift trend of NR LED output spectrum with increasing injection current is caused by the non-uniform distributions of QW width and indium content along the height on a sidewall. The photoluminescence spectral shift under reversed bias confirms that the emission of the fabricated NR LED comes from non-polar QWs.

16.
Opt Express ; 21(15): 17686-94, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23938641

RESUMO

For enhancing the light extraction of a light-emitting diode, surface grating fabrication based on a simple method of combining photoelectrochemical (PEC) etching with phase mask interferometry has been demonstrated. To understand the optimum grating period in forming a surface grating on a vertical light-emitting diode (VLED), we construct a Llyod's interferometer within PEC electrolyte (KOH) to fabricate surface gratings of various periods on VLEDs for comparing their light extraction efficiencies. Also, to compare the effectiveness of light extraction enhancement between surface grating and rough surface, VLEDs with the rough surfaces fabricated with two different KOH wet etching methods are fabricated. The comparisons of VLED characterizations show that among those grating VLEDs, the light extraction is more effective in a VLED of a smaller grating period. Also, compared with VLEDs of rough surfaces, the grating VLEDs of short grating periods (<2 µm) have the higher light extraction efficiencies, even though the root-mean-square roughness of the rough surface is significantly larger than the grating groove depth.


Assuntos
Lentes , Iluminação/instrumentação , Refratometria/instrumentação , Semicondutores , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície
17.
Opt Lett ; 38(17): 3370-3, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988960

RESUMO

A light-emitting device consisting of a two-dimensional regularly patterned InGaN/GaN quantum well (QW) nanorod (NR) light-emitting diode (LED) array is implemented and characterized. The NR p-i-n structure includes n-GaN NR core and essentially conformal p-GaN shell. The active regions include nonpolar sidewall QWs and polar top-face QWs. A conformal layer of transparent GaZnO of low resistivity is deposited onto the NR LED structure for spreading the injection current over the sidewalls. It is found that the blue-shift range of the output spectral peak in increasing injection current is smaller than that of a planar LED of about the same operation wavelength in a similar variation range of injection current density although it is nonzero. The small blue-shift range is attributed to the mixed emission contributions from the nonpolar sidewall QWs and polar top-face QWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA