Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 124: 111376, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236836

RESUMO

While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.

2.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441416

RESUMO

Radiation therapy is a primary treatment for hepatocellular carcinoma (HCC), but its effectiveness can be diminished by various factors. The over-expression of PD-L1 has been identified as a critical reason for radiotherapy resistance. Previous studies have demonstrated that nifuroxazide exerts antitumor activity by damaging the Stat3 pathway, but its efficacy against PD-L1 has remained unclear. In this study, we investigated whether nifuroxazide could enhance the efficacy of radiotherapy in HCC by reducing PD-L1 expression. Our results showed that nifuroxazide significantly increased the sensitivity of tumor cells to radiation therapy by inhibiting cell proliferation and migration while increasing apoptosis in vitro. Additionally, nifuroxazide attenuated the up-regulation of PD-L1 expression induced by irradiation, which may be associated with increased degradation of PD-L1 through the ubiquitination-proteasome pathway. Furthermore, nifuroxazide greatly enhanced the efficacy of radiation therapy in H22-bearing mice by inhibiting tumor growth, improving survival, boosting the activation of T lymphocytes, and decelerating the ratios of Treg cells in spleens. Importantly, nifuroxazide limited the increased expression of PD-L1 in tumor tissues induced by radiation therapy. This study confirms, for the first time, that nifuroxazide can augment PD-L1 degradation to improve the efficacy of radiation therapy in HCC-bearing mice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitrofuranos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Antígeno B7-H1 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Hidroxibenzoatos
3.
Life (Basel) ; 13(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36836851

RESUMO

Orf is an important zoonotic disease caused by the Orf virus (ORFV) which can cause contagious pustular dermatitis in goats and sheep. Orf is widespread in most sheep-raising countries in the world, causing huge economic losses. Although diagnostic methods for ORFV infection already exist, it is still necessary to develop a time-saving, labor-saving, specific, low-cost and visual diagnostic method for rapid detection of ORFV in the field and application in grassroots laboratories. This study establishes a DNA extraction-free, real-time, visual recombinase-aided amplification (RAA) method for the rapid detection of ORFV. This method is specific to ORFV and does not cross-react with other common DNA viruses. The detection limits of the real-time RAA and visual judgment of the RAA assay at 95% probability were 13 and 21 copies per reaction for ORFV, respectively. Compared with qPCR, the sensitivity and specificity of the real-time RAA assay were 100%, and those of the visual RAA assay were 92.31% and 100.0%, respectively. The DNA extraction-free visual detection method of RAA established in this study can meet the needs of rapid onsite detection and grassroots laboratories and has important reference value and significance for the early diagnosis of diseased animals.

4.
Biochim Biophys Acta Gen Subj ; 1867(2): 130281, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410609

RESUMO

BACKGROUND: Uncorrected obesity facilitates premature aging and cardiovascular anomalies. This study examined the interaction between obesity and aging on cardiac remodeling and contractile function. METHODS: Cardiac echocardiographic geometry, function, morphology, intracellular Ca2+ handling, oxidative stress (DHE fluorescence), STAT3 and stress signaling were evaluated in young (3-mo) and old (12- and 18-mo) lean and leptin deficient ob/ob obese mice. Cardiomyocytes from young and old lean and ob/ob mice were treated with leptin (1 nM) for 4 h in vitro prior to assessment of mechanical and biochemical properties. High fat diet (45% calorie from fat) and the leptin receptor mutant db/db obese mice at young and old age were evaluated for comparison. RESULTS: Our results displayed reduced survival in ob/ob mice. Obesity but less likely older age dampened echocardiographic, geometric, cardiomyocyte function and intracellular Ca2+ properties, elevated O2- and p47phox NADPH oxidase levels with a more pronounced geometric change at older age. Immunoblot analysis revealed elevated p47phox NADPH oxidase and dampened phosphorylation of STAT3, with a more pronounced response in old ob/ob mice, the effects were restored by leptin. Obesity and aging inhibited phosphorylation of Akt, eNOS, AMPK, and p38 while promoting phosphorylation of JNK and IκB. Leptin reconciled cardiomyocyte dysfunction, O2- yield, p47phox upregulation, STAT3 dephosphorylation and stress signaling in ob/ob mice although its action on stress signaling cascades were lost at old age. High fat diet-induced and db/db obesity displayed aging-associated cardiomyocyte anomalies reminiscent of ob/ob model albeit lost leptin response. CONCLUSIONS: Our data suggest disparate age-associated obesity response in cardiac remodeling and contractile dysfunction due to phosphorylation of Akt, eNOS and stress signaling-related oxidative stress.


Assuntos
Envelhecimento , Leptina , Miocárdio , Obesidade , Animais , Camundongos , Leptina/fisiologia , Camundongos Obesos , NADPH Oxidases , Proteínas Proto-Oncogênicas c-akt , Remodelação Ventricular , Miocárdio/patologia , Estresse Oxidativo , Estresse Fisiológico
5.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499594

RESUMO

COVID-19 was officially declared a global pandemic disease on 11 March 2020, with severe implications for healthcare systems, economic activity, and human life worldwide. Fast and sensitive amplification of the severe acute respiratory syndrome virus 2 (SARS-CoV-2) nucleic acids is critical for controlling the spread of this disease. Here, a real-time reverse transcription recombinase-aided amplification (RT-RAA) assay, targeting conserved positions in the nucleocapsid protein gene (N gene) of SARS-CoV-2, was successfully established for SARS-CoV-2. The assay was specific to SARS-CoV-2, and there was no cross-reaction with other important viruses. The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability. Furthermore, 100% concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 72 clinical specimens. Further linear regression analysis indicated a significant correlation between the real-time RT-RAA and RT-qPCR assays with an R2 value of 0.8149 (p < 0.0001). In addition, the amplicons of the real-time RT-RAA assay could be directly visualized by a portable blue light instrument, making it suitable for the rapid amplification of SARS-CoV-2 in resource-limited settings. Therefore, the real-time RT-RAA method allows the specific, sensitive, simple, rapid, and reliable detection of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transcrição Reversa , Recombinases/genética , Recombinases/metabolismo , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
6.
Shock ; 58(4): 304-312, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256626

RESUMO

ABSTRACT: Introduction: Sepsis impaired vascular integrity results in multiple organ failure. Circulating lactate level is positively correlated with sepsis-induced mortality. We investigated whether lactate plays a role in causing endothelial barrier dysfunction in sepsis. Methods: Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP). Lactic acid was injected i.p. (pH 6.8, 0.5 g/kg body weight) 6 h after CLP or sham surgery. To elucidate the role of heat shock protein A12B (HSPA12B), wild-type, HSPA12B-transgenic, and endothelial HSPA12B-deficient mice were subjected to CLP or sham surgery. To suppress lactate signaling, 3OBA (120 µM) was injected i.p. 3 h before surgery. Vascular permeability was evaluated with the Evans blue dye penetration assay. Results: We found that administration of lactate elevated CLP-induced vascular permeability. Vascular endothelial cadherin (VE-cadherin), claudin 5, and zonula occluden 1 (ZO-1) play a crucial role in the maintenance of endothelial cell junction and vascular integrity. Lactate administration significantly decreased VE-cadherin, claudin 5, and ZO-1 expression in the heart of septic mice. Our in vitro data showed that lactate (10 mM) treatment disrupted VE-cadherin, claudin 5, and ZO-1 in endothelial cells. Mechanistically, we observed that lactate promoted VE-cadherin endocytosis by reducing the expression of HSPA12B. Overexpression of HSPA12B prevented lactate-induced VE-cadherin disorganization. G protein-coupled receptor 81 (GPR81) is a specific receptor for lactate. Inhibition of GPR81 with its antagonist 3OBA attenuated vascular permeability and reversed HSPA12B expression in septic mice. Conclusions: The present study demonstrated a novel role of lactate in promoting vascular permeability by decreasing VE-cadherin junctions and tight junctions in endothelial cells. The deleterious effects of lactate in vascular hyperpermeability are mediated via HSPA12B- and GPR81-dependent signaling.


Assuntos
Permeabilidade Capilar , Sepse , Animais , Camundongos , Caderinas/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Ácido Láctico/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sepse/metabolismo
7.
Open Med (Wars) ; 17(1): 1019-1030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795002

RESUMO

Dysregulated microRNAs are closely related to the malignant progression of colorectal cancer (CRC). Although abnormal let-7i-3p expression has been reported in various human cancers, its biological role and potential mechanism in CRC remain unclear. Therefore, the purpose of this study was to investigate the expression and regulation of let-7i-3p in CRC. Here, we demonstrated that let-7i-3p expression was significantly downregulated in three CRC cell lines while CyclinD1 (CCND1) was upregulated compared with the normal colon epithelial FHC cells. Moreover, bioinformatics and luciferase reporter assays revealed that CCND1 was a direct functional target of let-7i-3p. In addition, let-7i-3p overexpression or CCND1 silencing inhibited cell cycle, proliferation, invasion, and migration and diminished the activation of p-ERK in HCT116 cells. However, exogenously expressing CCND1 alleviated these effects. Taken together, our findings may provide new insight into the pathogenesis of CRC and let-7i-3p/CCND1 might function as new therapeutic targets for CRC.

8.
Front Cell Infect Microbiol ; 12: 1071288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683681

RESUMO

Introduction: Influenza A viruses (IAVs) are important pathogens of respiratory infections, causing not only seasonal influenza but also influenza pandemics and posing a global threat to public health. IAVs infection spreads rapidly, widely, and across species, causing huge losses, especially zoonotic IAVs infections that are more harmful. Fast and sensitive detection of IAVs is critical for controlling the spread of this disease. Methods: Here, a real-time reverse transcription recombinase-aided amplification (real-time RT-RAA) assay targeting conserved positions in the matrix protein gene (M gene) of IAVs, is successfully established to detect IAVs. The assay can be completed within 20 min at 42°C. Results: The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability, which was comparable to the sensitivity of the RT-qPCR assay. The specificity assay showed that the real-time RT-RAA assay was specific to IAVs, and there was no cross-reactivity with other important viruses. In addition, 100%concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 120 clinical specimens. Discussion: The results suggested that the real-time RT-RAA assay we developed was a specific, sensitive and reliable diagnostic tool for the rapid detection of IAVs.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Transcrição Reversa , Influenza Humana/diagnóstico , Vírus da Influenza A/genética , Recombinases/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
9.
Cell Death Differ ; 29(1): 133-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363018

RESUMO

High circulating levels of lactate and high mobility group box-1 (HMGB1) are associated with the severity and mortality of sepsis. However, it is unclear whether lactate could promote HMGB1 release during sepsis. The present study demonstrated a novel role of lactate in HMGB1 lactylation and acetylation in macrophages during polymicrobial sepsis. We found that macrophages can uptake extracellular lactate via monocarboxylate transporters (MCTs) to promote HMGB1 lactylation via a p300/CBP-dependent mechanism. We also observed that lactate stimulates HMGB1 acetylation by Hippo/YAP-mediated suppression of deacetylase SIRT1 and ß-arrestin2-mediated recruitment of acetylases p300/CBP to the nucleus via G protein-coupled receptor 81 (GPR81). The lactylated/acetylated HMGB1 is released from macrophages via exosome secretion which increases endothelium permeability. In vivo reduction of lactate production and/or inhibition of GPR81-mediated signaling decreases circulating exosomal HMGB1 levels and improves survival outcome in polymicrobial sepsis. Our results provide the basis for targeting lactate/lactate-associated signaling to combat sepsis.


Assuntos
Proteína HMGB1 , Sepse , Acetilação , Proteína HMGB1/metabolismo , Humanos , Ácido Láctico , Macrófagos/metabolismo
10.
Transbound Emerg Dis ; 69(4): 2266-2274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34273259

RESUMO

Pseudorabies (PR) is an acute infectious disease of pigs caused by pseudorabies virus (PRV), which has caused great economic losses to the pig industry worldwide. Reliable and timely diagnose is crucial for the surveillance, control and eradication of PR. Here, a real-time fluorescent recombinase-aided amplification (real-time RAA) assay was established to detect PRV. Primers and probes were designed based on the conserved regions of the PRV gE gene. The assay was specific for the detection of wild-type PRV, showing no cross-reactivity with other important porcine viruses (including PRV gE-deleted vaccine strains). Analytical sensitivity of the assay was three 50% tissue culture infectious doses (TCID50 ) of PRV DNA per reaction with 95% reliability, which is comparable to that of a PRV-specific real-time PCR (qPCR) assay. In diagnosis of 206 clinical tissue samples, the diagnose accordance rate between the real-time RAA assay and qPCR assay was 97.57% (201/206). Interestingly, the amplified products of real-time RAA could be visualized under a portable blue light instrument, making it possible for the rapid detection of PRV in resource-limited settings and on-site screening. Therefore, our developed real-time RAA assay is a diagnostic method for the rapid detection of PRV in the field.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Herpesvirus Suídeo 1/genética , Vacinas contra Pseudorraiva/genética , Recombinases , Reprodutibilidade dos Testes , Suínos , Doenças dos Suínos/diagnóstico
11.
Transbound Emerg Dis ; 68(4): 2017-2027, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32979245

RESUMO

Classical swine fever (CSF), which is caused by the CSF virus (CSFV), remains one of the most economically important diseases of the global swine industry. Rapid and reliable detection of CSFV is critical for controlling CSF. In this study, a novel fluorescent probe-based real-time reverse transcription recombinase-aided amplification (rRT-RAA) assay, targeting a highly conserved position within the 5' non-translated region (5'NTR) among all CSFV genotypes, was developed for the detection of CSFV. The assay is highly specific to CSFV and does not cross react with other important viruses. Sensitivity analysis revealed that the assay could detect two 50% tissue culture infectious dose (TCID50 ) of CSFV RNA per reaction at 95% probability, which is comparable to that of a documentary reverse transcription quantitative PCR (RT-qPCR) assay for CSFV. The rRT-RAA assay exhibited good reproducibility, with intra- and inter-assay coefficient of variation values of <8.0%. Of the 135 samples (including 102 clinical tissue samples and 33 different cell culture isolates of CSFV), 50 and 52 samples were tested positive for CSFV by rRT-RAA and RT-qPCR, respectively. The coincidence rate between the two assays was 98.5% (133/135). Further linear regression analysis showed a significant correlation between the rRT-RAA and RT-qPCR assays with an R2 value of 0.8682. Interestingly, the amplification products of the rRT-RAA assay could be directly observed with naked eyes under a portable blue light imager, making it possible for an on-site testing. Our results indicate that the rRT-RAA assay is a robust diagnostic tool for the rapid detection of CSFV.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Doenças dos Suínos , Animais , Peste Suína Clássica/diagnóstico , Vírus da Febre Suína Clássica/genética , Corantes Fluorescentes , Recombinases , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
12.
Front Immunol ; 11: 587913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123172

RESUMO

Recent evidence from cancer research indicates that lactate exerts a suppressive effect on innate immune responses in cancer. This study investigated the mechanisms by which lactate suppresses macrophage pro-inflammatory responses. Macrophages [Raw 264.7 and bone marrow derived macrophages (BMDMs)] were treated with LPS in the presence or absence of lactate. Pro-inflammatory cytokines, NF-κB and YAP activation and nuclear translocation were examined. Our results show that lactate significantly attenuates LPS stimulated macrophage TNF-α and IL-6 production. Lactate also suppresses LPS stimulated macrophage NF-κB and YAP activation and nuclear translocation in macrophages. Interestingly, YAP activation and nuclear translocation are required for LPS stimulated macrophage NF-κB activation and TNFα production. Importantly, lactate suppressed YAP activation and nuclear translocation is mediated by GPR81 dependent AMKP and LATS activation which phosphorylates YAP, resulting in YAP inactivation. Finally, we demonstrated that LPS stimulation induces an interaction between YAP and NF-κB subunit p65, while lactate decreases the interaction of YAP and NF-κB, thus suppressing LPS induced pro-inflammatory cytokine production. Our study demonstrates that lactate exerts a previously unknown role in the suppression of macrophage pro-inflammatory cytokine production via GPR81 mediated YAP inactivation, resulting in disruption of YAP and NF-κB interaction and nuclear translocation in macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Láctico/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Células Cultivadas , Inflamação/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Receptores Acoplados a Proteínas G/imunologia , Sepse/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Proteínas de Sinalização YAP
13.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32790647

RESUMO

Angiogenesis is essential for cardiac functional recovery after myocardial infarction (MI). HSPA12B is predominately expressed in endothelial cells and required for angiogenesis. Yes-associated protein (YAP) plays an important role in tumor angiogenesis. This study investigated the cooperative role of HSPA12B and YAP in angiogenesis after MI. Silencing of either HSPA12B or YAP impaired hypoxia-promoted endothelial cell proliferation and angiogenesis. Deficiency of HSPA12B suppressed YAP expression and nuclear translocation after hypoxia. Knockdown of YAP attenuated hypoxia-stimulated HSPA12B nuclear translocation and abrogated HSPA12B-promoted endothelial cell angiogenesis. Mechanistically, hypoxia induced an interaction between endothelial HSPA12B and YAP. ChIP assay showed that HSPA12B is a target gene of YAP/transcriptional enhanced associated domain 4 (TEAD4) and a coactivator in YAP-associated angiogenesis. In vivo studies using the MI model showed that endothelial cell-specific deficiency of HSPA12B (eHspa12b-/-) or YAP (eYap-/-) impaired angiogenesis and exacerbated cardiac dysfunction compared with WT mice. MI increased YAP expression and nuclear translocation in WT hearts but not eHspa12b-/- hearts. HSPA12B expression and nuclear translocation were upregulated in WT MI hearts but not eYap-/- MI myocardium. Our data demonstrate that endothelial HSPA12B is a target and coactivator for YAP/TEAD4 and cooperates with YAP to regulate endothelial angiogenesis after MI.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endotélio Vascular/patologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Patológica/patologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Proteínas de Choque Térmico HSP70/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Transporte Proteico , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
14.
Front Immunol ; 11: 566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411123

RESUMO

Heat shock protein A12B (HSPA12B) is predominately expressed in endothelial cells (ECs) and has been reported to protect against cardiac dysfunction from endotoxemia or myocardial infarction. This study investigated the mechanisms by which endothelial HSPA12B protects polymicrobial sepsis-induced cardiomyopathy. Wild-type (WT) and endothelial HSPA12B knockout (HSPA12B-/-) mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP). Cecal ligation and puncture sepsis accelerated mortality and caused severe cardiac dysfunction in HSPA12B-/- mice compared with WT septic mice. The levels of adhesion molecules and the infiltrated immune cells in the myocardium of HSPA12B-/- septic mice were markedly greater than in WT septic mice. The levels of microRNA-126 (miR-126), which targets adhesion molecules, in serum exosomes from HSPA12B-/- septic mice were significantly lower than in WT septic mice. Transfection of ECs with adenovirus expressing HSPA12B significantly increased miR-126 levels. Increased miR-126 levels in ECs prevented LPS-stimulated expression of adhesion molecules. In vivo delivery of miR-126 carried by exosomes into the myocardium of HSPA12B-/- mice significantly attenuated CLP sepsis increased levels of adhesion molecules, and improved CLP sepsis-induced cardiac dysfunction. The data suggest that HSPA12B protects against sepsis-induced severe cardiomyopathy via regulating miR-126 expression which targets adhesion molecules, thus decreasing the accumulation of immune cells in the myocardium.


Assuntos
Cardiomiopatias/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , MicroRNAs/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/imunologia , Moléculas de Adesão Celular , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/complicações , Sepse/imunologia , Sepse/metabolismo
15.
Front Immunol ; 11: 825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457753

RESUMO

Endothelial cell dysfunction contributes to sepsis induced initiate immune response and the infiltration of immune cells into organs, resulting in organ injury. Heat shock protein A12B (HSPA12B) is predominantly expressed in endothelial cells. The present study investigated whether endothelial HSPA12B could regulate macrophage pro-inflammatory response during sepsis. Wild type (WT) and endothelial cell-specific HSPA12B deficient (HSPA12B-/-) mice were subjected to CLP sepsis. Mortality and cardiac function were monitored. Higher mortality, worsened cardiac dysfunction, and greater infiltrated macrophages in the myocardium and spleen were observed in HSPA12B-/- septic mice compared with the WT septic mice. The serum levels of TNF-α and IL-1ß were higher and the levels of IL-10 were lower in HSPA12B-/- septic mice than in WT septic mice. Importantly, endothelial exosomes contain HSPA12B which can be uptaken by macrophages. Interestingly, endothelial exosomal HSPA12B significantly increases IL-10 levels and decreases TNF-α and IL-1ß production in LPS-stimulated macrophages. Mechanistic studies show that endothelial exosomal HSPA12B downregulates NF-κB activation and nuclear translocation in LPS stimulated macrophages. These data suggest that endothelial HSPA12B plays a novel role in the regulation of macrophage pro-inflammatory response via exosomes during sepsis and that sepsis induced cardiomyopathy and mortality are associated with endothelial cell deficiency of HSPA12B.


Assuntos
Coinfecção/imunologia , Exossomos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais da Veia Umbilical Humana/imunologia , Macrófagos/imunologia , Sepse/imunologia , Sepse/microbiologia , Animais , Células Cultivadas , Coinfecção/sangue , Citocinas/sangue , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP70/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/sangue , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
16.
ACS Appl Mater Interfaces ; 12(13): 15120-15127, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134236

RESUMO

Poor interface stability is a crucial problem hindering the electrochemical performance of solid-state lithium batteries. In this work, a novel approach for interface stability was proposed to integrate the cathode/solid electrolyte by forming an electrolyte buffer layer on the rough surface of the cathode and coating a layer of graphite on the side of the electrolyte facing the lithium anode. This hybrid structure significantly improves the integration and the interface stability of the electrode/electrolyte. The interfacial resistance was dramatically reduced, the stability of the plating/stripping of Li metal was enhanced, and the growth of lithium dendrites was also inhibited due to the formation of the LiC6 transition layer. The obtained solid-state lithium battery shows enhanced rate performance at room temperature from 0.5 to 4 C and stable cycling performance at 1 C with a retention capacity of 100 mAh g-1 after 200 cycles. This integrated electrode/electrolyte design approach is expected to be widely used to improve interfacial stability and room-temperature electrochemical performance of solid-state batteries.

17.
Front Microbiol ; 10: 1103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156607

RESUMO

Bacterial pathogens maintain disulfide bonds for protein stability and functions that are required for pathogenesis. Vibrio parahaemolyticus is a Gram-negative pathogen that causes food-borne gastroenteritis and is also an important opportunistic pathogen of aquatic animals. Two genes encoding the disulfide bond formation protein A, DsbA, are predicted to be encoded in the V. parahaemolyticus genome. DsbA plays an important role in Vibrio cholerae virulence but its role in V. parahaemolyticus is largely unknown. In this study, the activities and functions of the two V. parahaemolyticus DsbA proteins were characterized. The DsbAs affected virulence factor expression at the post-translational level. The protein levels of adhesion factor VpadF (VP1767) and the thermostable direct hemolysin (TDH) were significantly reduced in the dsbA deletion mutants. V. parahaemolyticus lacking dsbA also showed reduced attachment to Caco-2 cells, decreased ß-hemolytic activity, and less toxicity to both zebrafish and HeLa cells. Our findings demonstrate that DsbAs contribute to V. parahaemolyticus pathogenesis.

18.
Entropy (Basel) ; 21(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33266883

RESUMO

It has previously been shown that it is more common to describe the evolution of the universe based on the emergence of space and the energy balance relation. Here we investigate the thermodynamic properties of the universe described by such a model. We show that the first law of thermodynamics and the generalized second law of thermodynamics (GSLT) are both satisfied and the weak energy condition are also fulfilled for two typical examples. Finally, we examine the physical consistency for the present model. The results show that there exists a good thermodynamic description for such a universe.

19.
Cardiovasc Res ; 115(1): 154-167, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982352

RESUMO

Aims: Inadequate healing after myocardial infarction (MI) leads to heart failure and fatal ventricular rupture, while optimal healing requires timely induction and resolution of inflammation. This study tested the hypothesis that heat shock protein B1 (HSPB1), which limits myocardial inflammation during endotoxemia, modulates wound healing after MI. Methods and results: To test this hypothesis, cardiomyocyte-specific HSPB1 knockout (Hspb1-/-) mice were generated using the Cre-LoxP recombination system. MI was induced by ligation of the left anterior descending coronary artery in Hspb1-/- and wild-type (WT) littermates. HSPB1 was up-regulated in cardiomyocytes of WT animals in response to MI, and deficiency of cardiomyocyte HSPB1 increased MI-induced cardiac rupture and mortality within 21 days after MI. Serial echocardiography showed more aggravated remodelling and cardiac dysfunction in Hspb1-/- mice than in WT mice at 1, 3, and 7 days after MI. Decreased collagen deposition and angiogenesis, as well as increased MMP2 and MMP9 activity, were also observed in Hspb1-/- mice compared with WT controls after MI, using immunofluorescence, polarized light microscopy, and zymographic analyses. Notably, Hspb1-/- hearts exhibited enhanced and prolonged leucocyte infiltration, enhanced expression of inflammatory cytokines, and enhanced TLR4/MyD88/NFκB activation compared with WT controls after MI. In-depth molecular analyses in both mice and primary cardiomyocytes demonstrated that cardiomyocyte-specific knockout of HSPB1 increased nuclear factor-κB (NFκB) activation, which promoted the expression of proinflammatory mediators. This led to increased leucocyte recruitment, thereby to excessive inflammation, ultimately resulting in adverse remodelling, cardiac dysfunction, and cardiac rupture following MI. Conclusion: These data suggest that HSPB1 acts as a negative regulator of NFκB-mediated leucocyte recruitment and the subsequent inflammation in cardiomyocytes. Cardiomyocyte HSPB1 is required for wound healing after MI and could be a target for myocardial repair in MI patients.


Assuntos
Quimiotaxia de Leucócito , Ruptura Cardíaca Pós-Infarto/metabolismo , Proteínas de Choque Térmico/deficiência , Leucócitos/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Remodelação Ventricular , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP27/deficiência , Proteínas de Choque Térmico HSP27/genética , Ruptura Cardíaca Pós-Infarto/imunologia , Ruptura Cardíaca Pós-Infarto/patologia , Ruptura Cardíaca Pós-Infarto/fisiopatologia , Proteínas de Choque Térmico/genética , Leucócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Ratos Sprague-Dawley , Transdução de Sinais , Cicatrização
20.
Shock ; 49(2): 120-125, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767543

RESUMO

Serum lactate levels are traditionally interpreted as a marker of tissue hypoxia and often used clinically as an indicator of severity and outcome of sepsis/septic shock. Interestingly, recent studies involving the effects of tumor-derived lactate suggest that lactate itself may have an immunosuppressive effect in its local environment. This finding adds to the recent advances in immunometabolism that shed light on the importance of metabolism and metabolic intermediates in the regulation of innate immune and inflammatory responses in sepsis. In this article, we summarize recent studies, showing that the activation of immune cells requires aerobic glycolytic metabolism and that lactate produced by aerobic glycolysis may play an immunosuppressive role in sepsis.


Assuntos
Terapia de Imunossupressão , Ácido Láctico/metabolismo , Sepse/imunologia , Sepse/metabolismo , Animais , Glicólise/fisiologia , Humanos , Imunidade Inata/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA