Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(20): 29763-29776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592631

RESUMO

Microorganisms are highly sensitive to toxic metal pollution and play an important role in the material cycling and energy flow of the water ecosystem. Herein, 13 sediment samples from Junchong Reservoir (Guangxi Province, China) were collected in December 2021. The spatial distribution of pollution levels for toxic metals and the effects of toxic metals on the composition, functional characteristics, and metabolism of microorganisms were investigated. The results demonstrated that the area is a proximate area to industrial zones with severity of toxic metal pollution. Their mean concentrations of As, Cu, Zn, and Pb were up to 128.79 mg/kg, 57.62 mg/kg, 594.77 mg/kg, and 97.12 mg/kg respectively. There was a strong correlation between As, Cu, Zn, and Pb, with the highest correlation coefficient reaching 0.94. As the level of toxic metal pollution increases, the diversity and abundance of microorganisms gradually decrease. Compared to those with lower pollution levels, the Shannon index in regions with higher pollution levels decreases by up to 0.373, and the Chao index decreases by up to 143.507. However, the relative abundance of Bacteroidota, Patescibacteria, and Chloroflexi increased by 23%, 20%, and 5%, respectively, indicating their higher adaptability to toxic metals. Furthermore, microbial carbon and nitrogen metabolism were also affected by the presence of toxic metals. FAPROTAX analysis demonstrated an abundant reduction of ecologically functional groups associated with carbon and nitrogen transformations under high toxic metal pollution levels. KEGG pathway analysis indicated that carbon fixation and nitrogen metabolism pathways were inhibited with increasing toxic metal concentrations. These findings would contribute to a better understanding of the effects of toxic metal pollution on sediment microbial communities and function, shedding light on the ecological consequences of toxic metal contamination.


Assuntos
Carbono , Sedimentos Geológicos , Nitrogênio , Sedimentos Geológicos/química , China , Poluentes Químicos da Água/toxicidade , Microbiota/efeitos dos fármacos , Monitoramento Ambiental , Metais Pesados
2.
Chemosphere ; 352: 141344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309600

RESUMO

Due to the rapid development of human beings, heavy metals are occurred in the Yunnan-Guizhou Plateau and Panxi Plateau, the special dry and hot climate areas. Pb and Cu can be quickly transferred through water-plant-animal, further harm to human health by food chain. Therefore, the study of heavy metal treatment is imminent. In this study, Biochar-montmorillonite composites were prepared by co-pyrolysis and characterized, and their ability to remove lead and copper from water-soil process were tracked. And their effectiveness in remediating soil contaminated by lead and copper was documented. The composite material has the rich pore structure, large specific surface area (81.5 m2/g) and a variety of surface functional groups such as C-C, CO, ester-metal and metal-oxygen bonds. Pb and Cu can be effectively adsorbed and fixed to the level of no harm to human health. The adsorption reaction of lead and copper on the Biochar-montmorillonite composites is more suitable to be described by Langmuir adsorption and pseudo-second-order kinetics models. The saturation adsorption capacity of the composite for Pb was measured as 212.5 mg/g. For Cu, it was 136.5 mg/g. The data were fitted by a two-compartment first-order kinetic model. ffast for Pb and Cu is estimated to be 0.81 and 0.78, respective. Fast adsorption is dominant and belongs to typical chemical adsorption, which is consistent with the second-order kinetic results. With 5 % of the composite, approximately 80 % of exchangeable heavy metals in those soils collected from the Yunnan-Guizhou Plateau and Panxi Plateau were reduced. The biochar-montmorillonite composites made Pb and Cu change to stable residual state, up to 35 %. Besides, it effectively restored the activity of urease and sucrase in soils. Results indicated that biochar-montmorillonite composites can be effectively used as an environment-friendly adsorbent or passivator to purify heavy metals in soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cobre , Bentonita , Chumbo , Poluentes do Solo/análise , China , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Adsorção , Água
3.
Environ Technol ; : 1-13, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970843

RESUMO

Rapid and effective simultaneous removal of algal and extracellular organic matter (EOM) is essential for algal blooms water emergency treatment. In this study, a composite material was prepared by physical and chemical interaction between La-montmorillonite (La-MMT) and Mg/Al-layered double hydroxide (LDHs), and its removal effect of algal and extracellular organic matters (EOM) was investigated. The results showed that the removal rate of chlorophyll a (chl-a) was 96.8% within 2 h when the LDHs/La-MMT2:1 dosage was 1.0 g/L. Three-dimensional fluorescence characteristic spectra and parallel factor analysis showed that the removal of EOM by composite material mainly reflected in the removal of humus-like substances. The reaction heat of composite material for the algal solution was -32.7 J/g. Zeta potential changed from -25.7 mV to -16.9 mV, the main treatment mechanisms of composite material were surface adsorption, complexation precipitation, charge neutralisation, and ion exchange. These findings herein proposed that composite material was a potential and proper treating agent for removing algal cells and EOM from algal blooms water.

4.
Environ Pollut ; 334: 122218, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479169

RESUMO

The surface microlayer membrane (SMM) is a complex and unique water body ecosystem. The SMM has a significant effect on water quality and the water ecological system. However, despite the long-lasting interest in the SMM formation process and its environmental effect mechanism in freshwater, studies on it are still scarce. This paper studied the changes in iron ions concentration and organic matter composition during the SMM formation process. Our results revealed that the iron ions enriched in the SMM, at a concentration of up to 8.02 µg/mL, exist in the form of Fe3+. The main organic matter is polysaccharides and proteins in the SMM. Additionally, the microbial community structure revealed that the changes in iron ion morphology in water and the SMM was a significant association with the presence of Aeromonas and Zoogloea. The rapid enrichment process of iron ions and organic matter in the aquatic surface microlayer is involved in the rapid formation of early SMM. Obviously, these findings provide new insights and a basis for the SMM of freshwater.


Assuntos
Ecossistema , Ferro , Ferro/química , Água Doce , Íons , Qualidade da Água
5.
Environ Res ; 231(Pt 2): 116221, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224943

RESUMO

Subalpine meadow soil with high moisture and humus content is a unique soil type in the Zoige Plateau. Oxytetracycline and copper are common soil contaminants which interact to form compound pollution. Oxytetracycline's adsorption on natural subalpine meadow soil and its components (humin and the soil without iron and manganese oxides) was studied in the laboratory with and without the presence of Cu2+. The effects of temperature, pH and Cu2+ concentration were documented in batch experiments, allowing deduction of the main sorption mechanisms. The adsorption process had two phases: one rapid, taking place in the first 6 h, and another slower, reaching equilibrium at around 36 h. The adsorption kinetics were pseudo-second-order, and the adsorption isotherm conformed to the Langmuir model at 25 °C. Higher concentrations oxytetracycline increased the adsorption, but higher temperature did not. The presence of Cu2+ had no effect on the equilibrium time, but the amount and rate adsorbed were much greater with Cu2+ concentration increased (except for the soil without iron and manganese oxides). The amounts adsorbed with/without Cu2+ were in the order the humin from subalpine meadow soil (7621 and 7186 µg/g) > the subalpine meadow soil (7298 and 6925 µg/g) > the soil without iron and manganese oxides (7092 and 6862 µg/g), but the difference among those adsorbents was slight. It indicates that humin is a particularly important adsorbent in the subalpine meadow soil. The amount of oxytetracycline adsorbed was greatest at pH 5-9. In addition, Surface complexation through metal bridging was the most important sorption mechanism. Cu2+ and oxytetracycline formed positively-charged complex that was adsorbed and then formed a ternary complex "adsorbent-Cu(II)-oxytetracycline", in which Cu2+ acted as a bridge. These findings provide a good scientific basis for soil remediation, and for assessing environmental health risks.


Assuntos
Oxitetraciclina , Cobre/química , Solo , Adsorção , Pradaria , Manganês , Ferro , Óxidos , Concentração de Íons de Hidrogênio , Cinética
6.
Environ Technol ; 44(20): 3050-3062, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35244499

RESUMO

Electrokinetic remediation (EK) combined with a permeable reactive barrier (PRB) is a relatively new technique for efficiently remediating Cd-contaminated soil in situ. Eupatorium adenophorum, which is a malignant invasive plant, was used to synthesise biochar and a novel lanthanum-based biochar composite (LaC). The biochar and LaC were used as cheap and environmentally benign PRB filling materials to remediate simulated and real Cd-contaminated soils. The pH and residual Cd concentration in the simulated contaminated soil during remediation gradually increased from the anode to the cathode used to apply an electric field to the EK-PRB system. However, the soil conductivity changed in the opposite way, and the current density first increased and then decreased. For simulated contaminated soils with initial Cd concentrations of 34.9 and 100.6 mg kg-1, the mean Cd removal rates achieved using LaC were 90.6% and 89.3%, respectively, which were significantly higher than those of biochar (P < 0.05). Similar results were achieved using natural soils from mining area and polluted farmland, and the Cd removal rates were 66.9% and 72.0%, respectively. Fourier-transform infrared and X-ray photoelectron spectroscopy indicated that there were many functional groups on the LaC surfaces. The removal mechanism of EK-PRB for Cd in contaminated soil includes electromigration, electroosmotic flow, surface adsorption, and ion exchange. The results indicated that the LaC could be used in the EK-PRB technique as a cheap and 'green' material to efficiently decontaminate soil polluted with heavy metals.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cádmio/química , Lantânio , Carvão Vegetal , Solo/química , Poluentes do Solo/química
7.
Chemosphere ; 312(Pt 2): 137295, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410503

RESUMO

The degradation of organic matter in soils plays an important role in the carbon cycle. Lignin is the main source of soil organics and it can be used to trace the source, distribution and turnover of organic matter. In this study the distribution and degradation of lignin were investigated to identify the source and degradation of soil organic matter during the succession of China's Zoige Plateau. Lignin monomers were determined by gas chromatography-mass spectrometry with alkaline CuO oxidation and the soils' δ13C and δ15N contents were interpreted to explore the turnover rate of lignin and organic matter. The main source of organics was identified as C3 non-woody angiosperm tissues. Lignin in the topsoil (0-30 cm) was derived from litter and roots, and it then migrated vertically to the deep soil (30-80 cm). Correlations of δ13C/δ15N with the soil's elemental composition showed that the organics degraded more quickly in meadow soil than in bog soil. The soil communities in the meadow and bog soils were generally similar, but there were certain differences in the dominant microbial phyla at different depths. The meadow soil's effectiveness as a carbon sink was gradually weakened, while that of the bog soil strengthened with depth. These results provide a scientific basis for accurately assessing the carbon sink capacity of the soils in Zoige Plateau.


Assuntos
Lignina , Solo , Sequestro de Carbono , Biomarcadores , China
8.
Environ Sci Pollut Res Int ; 29(30): 46259-46272, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35167022

RESUMO

Cephalosporin antibiotics, a group of widely prescribed antibiotics, are frequently detected in wastewater effluent and in the natural aquatic environment. Materials have been sought to effectively degrade the antibiotics. In this study, a novel high-iron clay was prepared with potassium ferrate and montmorillonite via a strong alkaline in situ synthesis method. Degradation of cefazolin sodium (CFZ) by this novel Fe (VI)-clay was investigated. The optimal conditions for the degradation of CFZ were determined using a single factor experiment and response surface optimization method. We found that 89.84% removal efficiency was obtained in 137 min when pH value was 5.16 and Fe (VI)-clay dosage was 0.79 g. The CFZ degradation mechanism was studied by computations on the Frontier Electron Density (FED) in combination with spectroscopic and mass spectroscopic analysis. The spectroscopic characteristics of the products at different stages showed that the oxidation decomposition reaction occurred during the degradation of CFZ by Fe (VI)-clay. Furthermore, FED calculation combined with GC-MS results showed that the degradation pathways of CFZ by the Fe (VI)-clay was mainly the cleavage of ß-lactam, thiadiazole, tetrazole, and dihydrothiazine rings.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos/química , Cefazolina , Argila , Ferro/química , Cinética , Oxirredução , Poluentes Químicos da Água/análise , Purificação da Água/métodos
9.
Environ Pollut ; 265(Pt A): 115091, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806395

RESUMO

Lake eutrophication has become a serious environmental problem in China. Manipulations covering more elements of trophic pyramid are methods for lakes to obtain clear water state and should be studied in detail. In the present study, Meishan Dongpo Lake was divided into two parts, and a combined biomanipulation project was conducted in one part (RLake), and the other part was used as a control (CLake). Species of submerged-plant, fish, macrobenthos, and zooplankton were screened and a certain number of them were added to adjust the eco-chain in RLake. After restoration, the coverage of submerged macrophytes reached >85%; zooplankton greater than 0.6 mm in size increased in number, and the ratio of zooplankton biomass to chlorophyll-a (Chl-a) concentration increased. The dominant fish species changed, and disturbance of the sediment was reduced. The average density of mollusks in RLake was 111.5 ± 19.8 ind m-2, which was much higher than that in CLake (36.7 ± 2.1 ind m-2). Water quality and clarity were substantially improved, and nutrient concentrations, particularly total phosphorus, total nitrogen, and Chl-a were significantly reduced. The aquatic community parameters were negatively correlated with the nutrient parameters and Chl-a. The ecological restoration have adjusted the aquatic ecosystem in RLake, and many positive feedback effects among the aquatic communities made them remove internal nutrients and Chl-a more efficiently.


Assuntos
Lagos , Qualidade da Água , Animais , China , Ecossistema , Eutrofização
10.
Ecotoxicol Environ Saf ; 201: 110816, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32521370

RESUMO

Mine tailings contain dangerously high levels of toxic metals which pose a constant threat to local ecosystems. Few naturally grown native plants can colonize tailings site and the existence of their root-associated microbial populations is poorly understood. The objective of this study was to give further insights into the interactions between native plants and their microbiota during natural attenuation of abandoned V-Ti magnetite mine tailings. In the present work, we first examined the native plants' potential for phytoremediation using plant/soil analytical methods and then investigated the root microbial communities and their inferred functions using 16 S rRNA-based metagenomics. It was found that in V-Ti magnetite mine tailings the two dominant plants Bothriochloa ischaemum and Typha angustifolia were able to increase available nitrogen in the rhizosphere soil by 23.3% and 53.7% respectively. The translocation factors (TF) for both plants indicated that B. ischaemum was able to accumulate Pb (TF = 1.212), while T. angustifolia was an accumulator of Mn (TF = 2.502). The microbial community structure was more complex in the soil associated with T. angustifolia than with B. ischaemum. The presence of both plants significantly reduced the population of Acinetobacter. Specifically, B. ischaemum enriched Massilia, Opitutus and Hydrogenophaga species while T. angustifolia significantly increased rhizobia species. Multivariate analyses revealed that among all tested soil variables Fe and total organic carbon (TOC) could be the key factors in shaping the microbial structure. The putative functional analysis indicated that soil sample of B. ischaemum was abundant with nitrate/nitrite reduction-related functions while that of T. angustifolia was rich in nitrogen fixing functions. The results indicate that these native plants host a diverse range of soil microbes, whose community structure can be shaped by plant types and soil variables. It is also possible that these plants can be used to improve soil nitrogen content and serve as bioaccumulators for Pb or Mn for phytoremediation purposes.


Assuntos
Óxido Ferroso-Férrico/toxicidade , Microbiota/efeitos dos fármacos , Raízes de Plantas/microbiologia , Poluentes do Solo/toxicidade , Titânio/toxicidade , Vanádio/toxicidade , Biodegradação Ambiental , China , Óxido Ferroso-Férrico/análise , Metagenômica , Microbiota/genética , Mineração , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Rhizobium , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Titânio/análise , Typhaceae/crescimento & desenvolvimento , Typhaceae/microbiologia , Vanádio/análise
11.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2567-2573, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34494778

RESUMO

We analyzed carbon (C), nitrogen (N), and phosphorus (P) contents and their stoichiometric characteristics of sandy soil in four restoration patterns after 5 years restoration in the northwest Sichuan, China, including planting grass alone (PG), planting shrub alone (PS), shrub-grass intercrop (SG), and shrub-herb intercrop (SH). The untreated sand land was set as control (CK). The results showed that soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), C/N, C/P, and N/P were increased under different restoration patterns, especially under shrub-grass intercrop (SG). In 0-10 cm and 10-20 cm soil layers, the contents of SOC and TN under SG were significantly higher than that under other patterns. In 0-40 cm soil layer, the SOC storage under SG was higher than that under PG, PS, SH, and CK by 13.4%, 15.6%, 17.1% and 43.2%, respectively. The available N, available P, available K, and water content were positively correlated to SOC, TN, and TP in 0-10 cm and 10-20 cm soil layers. Soil bulk density was negatively correlated to SOC, TN and TP. The alkaline N, available P, available K, and water content were significantly correlated to C/N and C/P in 10-20 cm soil layer. The contents and stoichiometry of soil C, N and P were affected by both ecological restoration measures and soil depth. The shrub-grass intercrop pattern was most beneficial to improve sandy soil environment quality in the study area.


Assuntos
Carbono , Nitrogênio , Carbono/análise , China , Pradaria , Nitrogênio/análise , Fósforo/análise , Solo
12.
Environ Pollut ; 255(Pt 1): 113167, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31522008

RESUMO

Mine tailings contain toxic metals and can lead to serious pollution of soil environment. Phytoremediation using legumes has been regarded as an eco-friendly way for the rehabilitation of tailings-laden lands but little is known about the changes of microbial structure during the process. In the present study, we monitored the dynamic change of microbiota in the rhizosphere of Pongamia pinnata during a 2-year on-site remediation of vanadium-titanium magnetite tailings. After remediation, overall soil health conditions were significantly improved as increased available N and P contents and enzyme activities were discovered. There was also an increase of microbial carbon and nitrogen contents. The Illumina sequencing technique revealed that the abundance of taxa under Proteobacteria was increased and rhizobia-related OTUs were preferentially enriched. A significant difference was discovered for sample groups before and after remediation. Rhizobium and Nordella were identified as the keystone taxa at genus rank. The functional prediction indicated that nitrogen fixation was enhanced, corresponding well with qPCR results which showed a significant increase of nifH gene copy numbers by the 2nd year. Our findings for the first time elucidated that legume phytoremediation can effectively cause microbial communities to shift in favour of rhizobia in heavy metal contaminated soil.


Assuntos
Millettia/metabolismo , Proteobactérias/metabolismo , Rhizobium/crescimento & desenvolvimento , Titânio/análise , Vanádio/análise , Biodegradação Ambiental , Recuperação e Remediação Ambiental , Óxido Ferroso-Férrico , Metais Pesados/análise , Microbiota , Nitrogênio/análise , Fixação de Nitrogênio , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
13.
Front Microbiol ; 9: 1853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210458

RESUMO

Metalliferous mine tailings have a negative impact on the soil environment near mining areas and render cultivable lands infertile. Phytoremediation involving the synergism of legume and rhizobia provides a useful technique in tackling this issue with cost-effective, environmentally friendly, and easy-to-use features under adverse soil conditions. Leucaena leucocephala has been found to build symbiotic relationships with native rhizobia in the iron-vanadium-titanium oxide (V-Ti magnetite) mine tailing soil. Rhizobia YH1, isolated from the root nodules of L. leucocephala, was classified as Sinorhizobium saheli according to similarity and phylogenetic analyses of 16S rRNA, housekeeping and nitrogen fixation genes. Besides nitrogen fixation, S. saheli YH1 also showed capabilities to produce indole-acetic acid (IAA) (166.77 ± 2.03 mg l-1) and solubilize phosphate (104.41 ± 7.48 mg l-1). Pot culture experiments showed that strain YH1 increased the biomass, plant height and root length of L. leucocephala by 67.2, 39.5 and 27.2% respectively. There was also an average increase in plant N (10.0%), P (112.2%) and K (25.0%) contents compared to inoculation-free control. The inoculation of YH1 not only reduced the uptake of all metals by L. leucocephala in the mine tailings, but also resulted in decreased uptake of Cd by up to 79.9% and Mn by up to 67.6% for plants grown in soils contaminated with Cd/Mn. It was concluded that S. saheli YH1 possessed multiple beneficial effects on L. leucocephala grown in metalliferous soils. Our findings highlight the role of S. saheli YH1 in improving plant health of L. leucocephala by reducing metal uptake by plants grown in heavy metal-polluted soils. We also suggest the idea of using L. leucocephala-S. saheli association for phytoremediation and revegetation of V-Ti mine tailings and soils polluted with Cd or Mn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA