Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 15(8): 2123-2136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495501

RESUMO

Colorectal cancer (CRC) seriously endangers human health owing to its high morbidity and mortality. Previous studies have suggested that high expression of CBX2 may be associated with poor prognosis in CRC patients. However, its functional role in CRC remains to be elucidated. Herein, we found that CBX2 overexpression in colorectal cancer tissue compared with adjacent tissues. Additionally, forest maps and the nomogram model indicated that elevated CBX2 expression was an independent prognostic factor in CRC. Moreover, we confirmed that the deletion of CBX2 markedly suppressed the proliferation and migration of CRC cells in vitro and in vivo. Furthermore, downregulation of CBX2 promotes CRC cell apoptosis and hinders the cell cycle. Mechanistically, our data demonstrated that deletion of CBX2 inhibited the MAPK signaling pathway by regulating the protein levels of Mettl3. In conclusion, our study demonstrated that CBX2 is a vital tumor suppressor in CRC and could be a promising anti-cancer therapeutic target.

2.
Front Genet ; 13: 949110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147502

RESUMO

Background: Cellular senescence is a typical irreversible form of life stagnation, and recent studies have suggested that long non-coding ribonucleic acids (lncRNA) regulate the occurrence and development of various tumors. In the present study, we attempted to construct a novel signature for predicting the survival of patients with hepatocellular carcinoma (HCC) and the associated immune landscape based on senescence-related (sr) lncRNAs. Method: Expression profiles of srlncRNAs in 424 patients with HCC were retrieved from The Cancer Genome Atlas database. Lasso and Cox regression analyses were performed to identify differentially expressed lncRNAs related to senescence. The prediction efficiency of the signature was checked using a receiver operating characteristic (ROC) curve, Kaplan-Meier analysis, Cox regression analyses, nomogram, and calibration. The risk groups of the gene set enrichment analysis, immune analysis, and prediction of the half-maximal inhibitory concentration (IC50) were also analyzed. Quantitative real-time polymerase chain reaction (qPCR) was used to confirm the levels of AC026412.3, AL451069.3, and AL031985.3 in normal hepatic and HCC cell lines. Results: We identified 3 srlncRNAs (AC026412.3, AL451069.3, and AL031985.3) and constructed a new risk model. The results of the ROC curve and Kaplan-Meier analysis suggested that it was concordant with the prediction. Furthermore, a nomogram model was constructed to accurately predict patient prognosis. The risk score also correlated with immune cell infiltration status, immune checkpoint expression, and chemosensitivity. The results of qPCR revealed that AC026412.3 and AL451069.3 were significantly upregulated in hepatoma cell lines. Conclusion: The novel srlncRNA (AC026412.3, AL451069.3, and AL031985.3) signatures may provide insights into new therapies and prognosis predictions for patients with HCC.

3.
J Cancer ; 13(3): 847-857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154453

RESUMO

Colorectal cancer (CRC) is a malignant disease that is a serious threat to human health. Rutaecarpine (RUT) is an important bioactive alkaloid of Evodia rutaecarpa. According to previous studies, RUT suppressed the proliferation of several human tumors. However, its role in colorectal tumorigenesis remained unknown. The aim of the present study was to determine the functions of RUT in CRC. Here, we have demonstrated that RUT inhibited the proliferation, migration and invasion of CRC cells in vitro. Further, RUT was found to induce the apoptosis of CRC cells. Mechanistically, RUT decreased the phosphorylation levels of NF-κB and STAT3. Moreover, treatment with RUT upregulated the expression of cleaved-Caspase3 and downregulated the expression of Bcl-2 in CRC. In addition, our findings suggested that RUT inhibited the growth and lung metastasis of CRC Cells in vivo. Based on immunofluorescence analysis, the expression of Ki67 was downregulated while that of cleaved-Caspase3 was upregulated in RUT-treated tumors compared with control-treated tumors. Taken together, our findings indicate that RUT can inhibit the proliferation and migration of CRC cells, and induce the apoptosis of CRC cells by inactivating NF-κB/STAT3 signaling. Our study highlights the potential clinical application of RUT for the treatment of CRC.

4.
Cell Signal ; 75: 109764, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32882406

RESUMO

Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers worldwide. RING finger protein 186 (RNF186) is a member of the RING finger protein family. RNF186 has been reported to be involved in the regulation of the intestinal homeostasis through the regulation of endoplasmic reticulum (ER) stress in colonic epithelial cells. However, its role in CRC remains unclear. In this study, we found that colorectal tumours from human patients had decreased levels of RNF186. We demonstrated that overexpression of RNF186 suppressed the growth and migration of CRC-derived cell lines in vitro and inhibited tumour proliferation in vivo. Further, our findings indicated that forced expression of RNF186 inhibited nuclear factor-κB (NF-κB) activation by reducing the phosphorylation of NF-κB. In addition, our results showed that RNF186-/- mice exhibited significantly increased tumour burden compared to the wild type (WT) mice following treatment with azoxymethane/dextran sulfate sodium (AOM/DSS). Compared to WT mice, the percentage of Ki67 positive cells was increased in the RNF186-/- mice, indicating that RNF186 is crucial for intestinal cell proliferation during tumorigenesis. Taken together, our data suggest that RNF186 inhibits the development of CRC, and that this effect is mediated through the suppression of NF-κB activity.


Assuntos
Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA