RESUMO
Triclosan (TCS), triclocarban (TCC), and chlorophenols (CPs) are broad-spectrum antibacterials widely used in dermatological and oral hygiene products, which could induce severe liver and intestine injuries. Hence, it is essential to establish a rapid and sensitive method to monitor TCS, TCC, and CPs in various organisms. In this work, fluorine-functionalized covalent organic framework (COF-F) was prepared by using 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tri-aniline and 2,3,5,6-tetrafluoroterephthalaldehyde as two building units and employed as a solid phase microextraction (SPME) probe for the extraction of TCS, TCC and CPs. The COF-F possessed excellent hydrophobicity, a large specific surface area (1354.3 m2 g-1) and high uniform porosity (3.2 nm), which facilitated high selectivity and adsorption properties towards TCS, TCC, and CPs. Therefore, the as-prepared COF-F-SPME in combination with electrospray ionization mass spectrometry has been developed to provide fast and ultrasensitive detection of TCS, TCC, and CPs in biological samples. The established method demonstrated satisfactory linear ranges (0.01-100.00 µg L-1) and low limits of detection (0.003-0.040 µg L-1) for TCS, TCC and CPs. The developed method could be successfully applied to detect TCS, TCC and CPs in the liver and kidney tissues of mice, demonstrating the potential for the detection of chlorinated aromatic pollutants in the biological samples.
Assuntos
Carbanilidas , Clorofenóis , Microextração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Triclosan , Animais , Microextração em Fase Sólida/métodos , Triclosan/análise , Triclosan/química , Carbanilidas/análise , Camundongos , Clorofenóis/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Flúor/química , Estruturas Metalorgânicas/química , Limite de Detecção , MasculinoRESUMO
Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.
Assuntos
Inseticidas , Lesão Pulmonar , NF-kappa B , Neonicotinoides , Nitrocompostos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Camundongos , Lesão Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inseticidas/toxicidade , Receptor 4 Toll-Like/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologiaRESUMO
Solid-phase microextraction (SPME) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for rapid and sensitive determination of endogenous androgens. The SPME probe is coated with covalent organic frameworks (COFs) synthesized by reacting 1,3,5-tri(4-aminophenyl)benzene (TPB) with 2,5-dioctyloxybenzaldehyde (C8PDA). This COFs-SPME probe offers several advantages, including enhanced extraction efficiency and stability. The analytical method exhibited wide linearity (0.1-100.0 µg L-1), low limits of detection (0.03-0.07 µg L-1), high enrichment factors (37-154), and satisfactory relative standard deviations (RSDs) for both within one probe (4.0-14.8%) and between different probes (3.4-12.7%). These remarkable performance characteristics highlight the reliability and precision of the COFs-SPME-ESI-MS method. The developed method was successfully applied to detect five kinds of endogenous androgens in female serum samples, indicating that the developed analytical method has great potential for application in preliminary clinical diagnosis.
Assuntos
Androgênios , Limite de Detecção , Microextração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Microextração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Androgênios/sangue , Androgênios/análise , Androgênios/química , Feminino , Estruturas Metalorgânicas/química , Reprodutibilidade dos TestesRESUMO
Development of a simple, highly selective, and sensitive analytical method for phthalate monoesters (mPAEs) remains a challenge due to the complexity of biological samples. To address this issue, Cu2+ immobilized magnetic covalent organic frameworks (Fe3O4@TtDt@Cu2+ composites) with core-shell structures were prepared to enhance the enrichment efficiency of mPAEs by a facile approach synthesis of COFs shells with inherent bifunctional groups on Fe3O4 NPs and further Cu2+ immobilization. The composites exhibit high specific surface area (348.1 m2 g-1), outstanding saturation magnetization (34.94 emu g-1), ordered mesoporous structure, Cu2+ immobilization, and excellent thermal stability. Accordingly, a magnetic solid-phase extraction (MSPE) pretreatment technique based on Cu2+ immobilized COF composites combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established, and key parameters including the adsorbent amount, adsorption time, elution solvent, etc. were examined in detail. The developed analytical method showed wide linear ranges (10-8000 ng L-1), low limit of detections (LODs, 2-10 ng L-1), and good correlation coefficients (R2 ≥ 0.9904) for the five mPAEs. Furthermore, the analytical method was also successfully applied to the highly sensitive detection of metabolite mPAEs in mouse plasma samples, indicating the promising application of the Fe3O4@TtDt@Cu2+ composites as a quick and efficient adsorbent in the sample pretreatment.