Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 18440-18449, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37011229

RESUMO

Metal-organic frameworks (MOFs) are an important class of crystalline porous materials with extensive chemical and structural merits. However, the fabrication of MOF thin films oriented along all crystallographic axes to achieve well-aligned nanopores and nanochannels with uniform apertures remains a challenge. Here, we achieved highly crystalline single-domain MOF thin films with the [111] out-of-plane orientation by electrochemical conversion of cuprous oxide. Copper(II)-benzene-1,3,5-tricarboxylate, Cu3(BTC)2 (referred to as Cu-BTC), is a well-known metal-organic open framework material with a cubic crystal system. Epitaxial Cu-BTC(111) thin films were manufactured by electrochemical oxidation of Cu2O(111) films electrodeposited on single-crystal Au(111). The Cu-BTC(111) shows an in-plane antiparallel relationship with the precursor Cu2O(111) with a -0.91% coincidence site lattice mismatch. A plausible mechanism was proposed for the electrochemical conversion of Cu2O into Cu-BTC, indicating formation of intermediate CuO, growth of Cu-BTC islands, and termination with coalesce into a dense film with a limiting thickness of about 740 nm. The Faradaic efficiency for the electrochemical conversion was 63%. In addition, epitaxial Cu-BTC(111) foils were fabricated by epitaxial lift-off following the electrochemical etching of residual Cu2O underneath the Cu-BTC. It was also demonstrated that Cu-BTC(111) films with two in-plane domains and textured Cu-BTC(111) films can be achieved on a large scale using electrodeposited Au/Si and Au-coated glass as low-cost substrates.

2.
Science ; 365(6458)2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515358

RESUMO

Lu and Tang claim that the spin-coated films in our study are not epitaxial. They assume that all of the background intensity in the x-ray pole figures of the spin-coated materials is due to randomly oriented grains. There is no evidence for randomly oriented grains in the 2θ x-ray patterns. The background intensity in the pole figures is also comparable to the background from the single-crystal substrates, which is inconsistent with their assumption.

3.
Science ; 364(6436): 166-169, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30975885

RESUMO

Spin-coated films, such as photoresists for lithography or perovskite films for solar cells, are either amorphous or polycrystalline. We show that epitaxial films of inorganic materials such as cesium lead bromide (CsPbBr3), lead(II) iodide (PbI2), zinc oxide (ZnO), and sodium chloride (NaCl) can be deposited onto a variety of single-crystal and single-crystal-like substrates by simply spin coating either solutions of the material or precursors to the material. The out-of-plane and in-plane orientations of the spin-coated films are determined by the substrate. The thin stagnant layer of supersaturated solution produced during spin coating promotes heterogeneous nucleation of the material onto the single-crystal substrate over homogeneous nucleation in the bulk solution, and ordered anion adlayers may lower the activation energy for nucleation on the surface. The method can be used to produce functional materials such as inorganic semiconductors or to deposit water-soluble materials such as NaCl that can serve as growth templates.

4.
J Am Chem Soc ; 140(46): 15812-15819, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30360614

RESUMO

Surfaces of achiral materials exhibit two-dimensional chirality if they lack mirror symmetry. An example is the (643) surface of face-centered-cubic metals such as Au. The (643) and (6̅4̅3̅) surfaces are non-superimposable mirror images of each other. Chiral surfaces offer the possibility of serving as heterogeneous catalysts for chiral synthesis or providing a platform for chiral separation or crystallization. Here, we show the symmetry requirements for surface chirality, and we demonstrate that chiral surfaces can be produced by electrochemically depositing epitaxial films of Au onto commercially available Si(643) wafers. Au(643) is deposited onto one side of the wafer, and its enantiomer Au(6̅4̅3̅) is deposited on the other side of the wafer. In addition to the (643) orientation, the (8 14 17) orientation of Au is produced on the Si(643) wafers. The (8 14 17) orientation has a similar kinked surface to the (643) surface, but it has staggered kinks. Other metal films including Pt, Ni, Cu, and Ag that are electrodeposited onto the Au films exhibit strong in-plane and out-of-plane order. Hence, the method provides a pathway for producing chiral surfaces of a wide range of materials, and it obviates the need to work with expensive single crystals. The Ag/Au/Si(643) surface showed a preference for the electrochemical oxidation of d-glucose, whereas the Ag/Au/Si(6̅4̅3̅) surface showed preference for the oxidation of l-glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA