Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 27(1): 53, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764935

RESUMO

BACKGROUND: Organoids, which are organs grown in a dish from stem or progenitor cells, model the structure and function of organs and can be used to define molecular events during organ formation, model human disease, assess drug responses, and perform grafting in vivo for regenerative medicine approaches. For therapeutic applications, there is a need for nondestructive methods to identify the differentiation state of unlabeled organoids in response to treatment with growth factors or pharmacologicals. METHODS: Using complex 3D submandibular salivary gland organoids developed from embryonic progenitor cells, which respond to EGF by proliferating and FGF2 by undergoing branching morphogenesis and proacinar differentiation, we developed Raman confocal microspectroscopy methods to define Raman signatures for each of these organoid states using both fixed and live organoids. RESULTS: Three separate quantitative comparisons, Raman spectral features, multivariate analysis, and machine learning, classified distinct organoid differentiation signatures and revealed that the Raman spectral signatures were predictive of organoid phenotype. CONCLUSIONS: As the organoids were unlabeled, intact, and hydrated at the time of imaging, Raman spectral fingerprints can be used to noninvasively distinguish between different organoid phenotypes for future applications in disease modeling, drug screening, and regenerative medicine.


Assuntos
Organoides , Células-Tronco , Diferenciação Celular , Morfogênese , Fenótipo
2.
Free Radic Biol Med ; 169: 416-424, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930515

RESUMO

Serum transferrin (Tf) is the essential iron transport protein in the body. Transferrin is responsible for the sequestration of free iron in serum and the delivery of iron throughout the body and into cells, where iron is released inside a mildly acidified endosome. Altered iron distributions are associated with diseases such as iron-overload, cancer, and cardiovascular disease. The presence of free iron is linked to deleterious redox reactions, inside and outside cells and organelles. As Tf iron release is pH dependent, any changes in intraorganelle and extracellular pH, often associated with disease progression, could inhibit normal iron delivery or accelerate iron release in the wrong compartment. However, imaging approaches to monitor changes in the iron-bound state of Tf are lacking. Recently, Raman spectroscopy has been shown to measure iron-bound forms of Tf in solution, intact cells and tissue samples. Here, a biochemical Raman assay has been developed to identify iron-release from Tf following modification of chemical environment. Quantitative singular value decomposition (SVD) method has been applied to discriminate between iron-bound Tf samples during endocytic trafficking in intact cancer cells subjected to Raman hyperspectral confocal imaging. We demonstrate the strength of the SVD method to monitor pH-induced Tf iron-release using Raman hyperspectral imaging, providing the redox biology field with a novel tool that facilitates subcellular investigation of the iron-binding profile of transferrin in various disease models.


Assuntos
Ferro , Transferrina , Endossomos/metabolismo , Imageamento Hiperespectral , Ferro/metabolismo , Receptores da Transferrina
3.
Redox Biol ; 36: 101617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863219

RESUMO

Transferrin (Tf) is an essential serum protein which delivers iron throughout the body via transferrin-receptor (TfR)-mediated uptake and iron release in early endosomes. Currently, there is no robust method to assay the population of iron-bound Tf in intact cells and tissues. Raman hyperspectral imaging detected spectral peaks that correlated with iron-bound Tf in intact cells and tumor xenografts sections (~1270-1300 cm-1). Iron-bound (holo) and iron-free (apo) human Tf forms were endocytosed by MDAMB231 and T47D human breast cancer cells. The Raman iron-bound Tf peak was identified in cells treated with holo-Tf, but not in cells incubated with apo-Tf. A reduction in the Raman peak intensity between 5 and 30 min of Tf internalization was observed in T47D, but not in MDAMB231, suggesting that T47D can release iron from Tf more efficiently than MDAMB231. MDAMB231 may display a disrupted iron homeostasis due to iron release delays caused by alterations in the pH or ionic milieu of the early endosomes. In summary, we have demonstrated that Raman hyperspectral imaging can be used to identify iron-bound Tf in cell cultures and tumor xenografts and detect iron release behavior of Tf in breast cancer cells.


Assuntos
Neoplasias da Mama , Transporte Biológico , Neoplasias da Mama/diagnóstico por imagem , Feminino , Homeostase , Humanos , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
4.
Opt Express ; 28(5): 6123-6133, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225868

RESUMO

We describe a microscopic setup implementing phase imaging by digital holographic microscopy (DHM) and transport of intensity equation (TIE) methods, which allows the results of both measurements to be quantitatively compared for either live cell or static samples. Digital holographic microscopy is a well-established method that provides robust phase reconstructions, but requires a sophisticated interferometric imaging system. TIE, on the other hand, is directly compatible with bright-field microscopy, but is more susceptible to noise artifacts. We present results comparing DHM and TIE on a custom-built microscope system that allows both techniques to be used on the same cells in rapid succession, thus permitting the comparison of the accuracy of both methods.


Assuntos
Tecnologia Digital , Holografia/métodos , Microscopia/métodos , Animais , Sobrevivência Celular , Bochecha , Análise de Fourier , Humanos
5.
Mol Cancer Res ; 18(5): 757-773, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019812

RESUMO

Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation. IMPLICATIONS: Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Endocitose , Regulação Neoplásica da Expressão Gênica , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rab4 de Ligação ao GTP/genética
6.
Am J Respir Cell Mol Biol ; 61(2): 219-231, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30811945

RESUMO

Airway smooth muscle cells require coordinated protrusion and focal adhesion dynamics to migrate properly. However, the signaling cascades that connect these two processes remain incompletely understood. Glia maturation factor (GMF)-γ has been implicated in inducing actin debranching and inhibiting nucleation. In this study, we discovered that GMFγ phosphorylation at Y104 regulates human airway smooth muscle cell migration. Using high-resolution microscopy coupled with three-dimensional object-based quantitative image analysis software, Imaris 9.2.0, phosphomimetic mutant, Y104D-GMFγ, was enriched at nascent adhesions along the leading edge where it recruited activated neural Wiskott-Aldrich syndrome protein (N-WASP; pY256) to promote actin-branch formation, which enhanced lamellipodial dynamics and limited the growth of focal adhesions. Unexpectedly, we found that nonphosphorylated mutant, Y104F-GMFγ, was enriched in growing adhesions where it promoted a linear branch organization and focal adhesion clustering, and recruited zyxin to increase maturation, thus inhibiting lamellipodial dynamics and cell migration. The localization of GMFγ between the leading edge and focal adhesions was dependent upon myosin activity. Furthermore, c-Abl tyrosine kinase regulated the GMFγ phosphorylation-dependent processes. Together, these results unveil the importance of GMFγ phosphorylation in coordinating lamellipodial and focal adhesion dynamics to regulate cell migration.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Fator de Maturação da Glia/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pseudópodes/metabolismo , Brônquios/metabolismo , Adesão Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Microscopia de Fluorescência , Contração Muscular , Mutação , Fosforilação , Transdução de Sinais , Software , Traqueia/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Zixina/metabolismo
7.
J Control Release ; 286: 451-459, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30036545

RESUMO

Maintaining an intact tumor environment is critical for quantitation of receptor-ligand engagement in a targeted drug development pipeline. However, measuring receptor-ligand engagement in vivo and non-invasively in preclinical settings is extremely challenging. We found that quantitation of intracellular receptor-ligand binding can be achieved using whole-body macroscopic lifetime-based Förster Resonance Energy Transfer (FRET) imaging in intact, live animals bearing tumor xenografts. We determined that FRET levels report on ligand binding to transferrin receptors conversely to raw fluorescence intensity. FRET levels in heterogeneous tumors correlate with intracellular ligand binding but strikingly, not with ubiquitously used ex vivo receptor expression assessment. Hence, MFLI-FRET provides a direct measurement of systemic delivery, target availability and intracellular drug delivery in preclinical studies. Here, we have used MFLI to measure FRET longitudinally in intact and live animals. MFLI-FRET is well-suited for guiding the development of targeted drug therapy in heterogeneous tumors in intact, live small animals.


Assuntos
Sistemas de Liberação de Medicamentos , Transferência Ressonante de Energia de Fluorescência/instrumentação , Neoplasias/metabolismo , Imagem Óptica/instrumentação , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Equipamento , Feminino , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Humanos , Camundongos Nus , Neoplasias/tratamento farmacológico , Receptores da Transferrina/análise , Transferrina/análise , Imagem Corporal Total/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA