Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161388

RESUMO

French marigold is an aromatic plant rich in polyphenolic secondary metabolites, which pesticidal potential was examined in this study. Ultra-high-performance liquid chromatography (UHPLC) connected with OrbiTrap mass spectrometer (MS) identified 113 phenolics and revealed the most detailed phytochemistry of French marigold published so far. Depending on plant material (flowers or leaves) and solvents used for extraction (water, methanol, dichloromethane), the phenolic composition varied. Methanol extract of flowers, with 89 identified phenolics and high antioxidant activity statistically comparable with positive control Trolox, was chosen for testing of antifeedant potential against the 3rd and 4th instars of Colorado potato beetle (CPB). A significant reduction in final body mass of 4th larval stage fed with potato leaves coated with methanol extract of flowers in the concentration of 10 mg/mL was observed (157.67 mg vs. 182.26 mg of controls fed with non-treated leaves). This caused delayed molting since treated larvae reached the maximal mass a day after controls and this delay persisted during the entire larval development. Continuous feeding caused a 25% decline in digestive proteolytic activity of the 4th instar in comparison to controls. The results suggest that French marigold methanol extract of flowers could be proposed as a promising antifeedant for CPB management, with an impact on the reduction in the environmental footprint associated with synthetic pesticide application.

2.
Plants (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451644

RESUMO

A plant's main mechanism to diminish the effects caused by high free radical levels generated during high irradiance is the synthesis of various secondary metabolites. In addition to interspecies differences, their concentrations may be influenced by genetic, ontogenic, morphogenetic or environmental factors. We investigated the influence of genetic (genotypes from different natural habitats) and environmental (contrasting light regimes as well as successive parts of the vegetation period) variability on the accumulation of 10 selected phenolic compounds (phenolic acids, flavonoids, and xanthones) in Iris variegata genotypes. Genotypes originated from either sun-exposed or shaded natural habitats were transplanted to two experimental light treatments (high light intensity with a higher R/FR ratio and low light intensity with a lower R/FR ratio). Significant impacts of both genetic and environmental seasonal variability (spring, summer and fall during the vegetation period) on phenolic compound profiles were detected. Their highest amounts were detected in spring. The magnitude of difference between light treatments (high vs. low light intensity) and the direction of this change varied depending on the secondary compound class. Phenotypic correlations among the 10 analyzed secondary metabolites differed across the experimental light treatments and their number decreased from spring to fall.

3.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445260

RESUMO

De novo shoot organogenesis (DNSO) is a procedure commonly used for the in vitro regeneration of shoots from a variety of plant tissues. Shoot regeneration occurs on nutrient media supplemented with the plant hormones cytokinin (CK) and auxin, which play essential roles in this process, and genes involved in their signaling cascades act as master regulators of the different phases of shoot regeneration. In the last 20 years, the genetic regulation of DNSO has been characterized in detail. However, as of today, the CK and auxin signaling events associated with shoot regeneration are often interpreted as a consequence of these hormones simply being present in the regeneration media, whereas the roles for their prior uptake and transport into the cultivated plant tissues are generally overlooked. Additionally, sucrose, commonly added to the regeneration media as a carbon source, plays a signaling role and has been recently shown to interact with CK and auxin and to affect the efficiency of shoot regeneration. In this review, we provide an integrative interpretation of the roles for CK and auxin in the process of DNSO, adding emphasis on their uptake from the regeneration media and their interaction with sucrose present in the media to their complex signaling outputs that mediate shoot regeneration.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/citologia
4.
Plants (Basel) ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477577

RESUMO

Flower strips of French Marigold are commonly used pest repellents in potato fields. However, the effect of French Marigold volatiles on potato metabolism, physiology and induced defense is unknown. Thus, a microarray transcriptome analysis was performed to study the effects of French Marigold essential oil (EO) on laboratory-grown potato. After 8 h of exposure to EO, with gas chromatography/mass spectrometry (GC/MS)-detected terpinolene and limonene as dominant compounds, 2796 transcripts were differentially expressed with fold change >2 compared to expression in controls. A slightly higher number of transcripts had suppressed expression (1493 down- vs. 1303 up-regulated). Since transcripts, annotated to different photosynthesis-related processes, were mostly down-regulated, we selected a set of 10 genes involved in the leaf starch metabolism pathway, and validated microarray patterns using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Except for decreased synthesis and induced decomposition of starch granule in leaves, 8 h long EO exposure slightly elevated the accumulation of sucrose compared to glucose and fructose in subjected potato plants. An in vitro feeding bioassay with Colorado potato beetle showed that EO-induced alternations on transcriptional level and in the sugars' metabolism caused the enhancement of feeding behavior and overall development of the tested larvae. Results of comprehensive analysis of transcriptional responses in potato exposed to French Marigold EO provide a basis for further elucidation of molecular mechanisms underlying eco-physiological interactions in companion planting cropping systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA