Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 120: 103331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484461

RESUMO

PURPOSE: Within a multi-institutional project, we aimed to assess the transferability of knowledge-based (KB) plan prediction models in the case of whole breast irradiation (WBI) for left-side breast irradiation with tangential fields (TF). METHODS: Eight institutions set KB models, following previously shared common criteria. Plan prediction performance was tested on 16 new patients (2 pts per centre) extracting dose-volume-histogram (DVH) prediction bands of heart, ipsilateral lung, contralateral lung and breast. The inter-institutional variability was quantified by the standard deviations (SDint) of predicted DVHs and mean-dose (Dmean). The transferability of models, for the heart and the ipsilateral lung, was evaluated by the range of geometric Principal Component (PC1) applicability of a model to test patients of the other 7 institutions. RESULTS: SDint of the DVH was 1.8 % and 1.6 % for the ipsilateral lung and the heart, respectively (20 %-80 % dose range); concerning Dmean, SDint was 0.9 Gy and 0.6 Gy for the ipsilateral lung and the heart, respectively (<0.2 Gy for contralateral organs). Mean predicted doses ranged between 4.3 and 5.9 Gy for the ipsilateral lung and 1.1-2.3 Gy for the heart. PC1 analysis suggested no relevant differences among models, except for one centre showing a systematic larger sparing of the heart, concomitant to a worse PTV coverage, due to high priority in sparing the left anterior descending coronary artery. CONCLUSIONS: Results showed high transferability among models and low inter-institutional variability of 2% for plan prediction. These findings encourage the building of benchmark models in the case of TF-WBI.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Parede Torácica , Humanos , Feminino , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Mama , Órgãos em Risco/efeitos da radiação
2.
Phys Imaging Radiat Oncol ; 28: 100488, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37694264

RESUMO

Background and Purpose: The association between dose to selected bladder and rectum symptom-related sub-regions (SRS) and late toxicity after prostate cancer radiotherapy has been evidenced by voxel-wise analyses. The aim of the current study was to explore the feasibility of combining knowledge-based (KB) and multi-criteria optimization (MCO) to spare SRSs without compromising planning target volume (PTV) dose delivery, including pelvic-node irradiation. Materials and Methods: Forty-five previously treated patients (74.2 Gy/28fr) were selected and SRSs (in the bladder, associated with late dysuria/hematuria/retention; in the rectum, associated with bleeding) were generated using deformable registration. A KB model was used to obtain clinically suitable plans (KB-plan). KB-plans were further optimized using MCO, aiming to reduce dose to the SRSs while safeguarding target dose coverage, homogeneity and avoiding worsening dose volume histograms of the whole bladder, rectum and other organs at risk. The resulting MCO-generated plans were examined to identify the best-compromise plan (KB + MCO-plan). Results: The mean SRS dose decreased in almost all patients for each SRS. D1% also decreased in the large majority, less frequently for dysuria/bleeding SRS. Mean differences were statistically significant (p < 0.05) and ranged between 1.3 and 2.2 Gy with maximum reduction of mean dose up to 3-5 Gy for the four SRSs. The better sparing of SRSs was obtained without compromising PTVs coverage. Conclusions: Selectively sparing SRSs without compromising PTV coverage is feasible and has the potential to reduce toxicities in prostate cancer radiotherapy. Further investigation to better quantify the expected risk reduction of late toxicities is warranted.

3.
Phys Med ; 110: 102606, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37196603

RESUMO

PURPOSE: To extend the knowledge-based (KB) automatic planning approach to CyberKnife in the case of Stereotactic Body Radiation Therapy (SBRT) for prostate cancer. METHODS: Seventy-two clinical plans of patients treated according to the RTOG0938 protocol (36.25 Gy/5fr) with CyberKnife were exported from the CyberKnife system to Eclipse to train a KB-model using the Rapid Plan tool. The KB approach provided dose-volume objectives for specific OARs only and not PTV. Bladder, rectum and femoral heads were considered in the model. The KB-model was successfully trained on 51 plans and then validated on 20 new patients. A KB-based template was tuned in the Precision system for both sequential optimization (SO) and VOLO optimization algorithms. Plans of the validation group were re-optimized (KB-TP) using both algorithms without any operator intervention and compared against the original plans (TP) in terms of OARs/PTV dose-volume parameters. Paired Wilcoxon signed-rank tests were performed to assess statistically significant differences (p < 0.05). RESULTS: Regarding SO, automatic KB-TP plans were generally better than or equivalent to TP plans. PTVs V95% was slightly worse while OARs sparing for KB-TP was significantly improved. Regarding VOLO optimization, the PTVs coverage was significantly better for KB-TP while there was a limited worsening in the rectum. A significant improvement was observed in the bladder in the range of low-intermediate doses. CONCLUSIONS: An extension of the KB optimization approach to the CyberKnife system has been successfully developed and validated in the case of SBRT prostate cancer.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
4.
Phys Imaging Radiat Oncol ; 23: 54-59, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814259

RESUMO

Background/Purpose: Tomotherapy may deliver high-quality whole breast irradiation at static angles. The aim of this study was to implement Knowledge-Based (KB) automatic planning for left-sided whole breast using this modality. Materials/Methods: Virtual volumetric plans were associated to the dose distributions of 69 Tomotherapy (TT) clinical plans of previously treated patients, aiming to train a KB-model using a commercial tool completely implemented in our treatment planning system. An individually optimized template based on the resulting KB-model was generated for automatic plan optimization. Thirty patients of the training set and ten new patients were considered for internal/external validation. Fully-automatic plans (KB-TT) were generated and compared using the same geometry/number of fields of the corresponding clinical plans. Results: KB-TT plans were successfully generated in 26/30 and 10/10 patients of the internal/external validation sets; for 4 patients whose original plans used only two fields, the manual insertion of one/two fields before running the automatic template was sufficient to obtain acceptable plans. Concerning internal validation, planning target volume V95%/D1%/dose distribution standard deviation improved by 0.9%/0.4Gy/0.2Gy (p < 0.05) against clinical plans; Organs at risk mean doses were also slightly improved (p < 0.05) by 0.07/0.4/0.2/0.01 Gy for left lung/heart/right breast/right lung respectively. Similarly satisfactory results were replicated in the external validation set. The resulting treatment duration was 8 ± 1 min, consistent with our clinical experience. The active planner time per patient was 5-10 minutes. Conclusion: Automatic TT left-sided breast KB-plans are comparable to or slightly better than clinical plans and can be obtained with limited planner time. The approach is currently under clinical implementation.

5.
Radiother Oncol ; 175: 10-16, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868603

RESUMO

PURPOSE: To quantify inter-institute variability of Knowledge-Based (KB) models for right breast cancer patients treated with tangential fields whole breast irradiation (WBI). MATERIALS AND METHODS: Ten institutions set KB models by using RapidPlan (Varian Inc.), following previously shared methodologies. Models were tested on 20 new patients from the same institutes, exporting DVH predictions of heart, ipsilateral lung, contralateral lung, and contralateral breast. Inter-institute variability was quantified by the inter-institute SDint of predicted DVHs/Dmean. Association between lung sparing vs PTV coverage strategy was also investigated. The transferability of models was evaluated by the overlap of each model's geometric Principal Component (PC1) when applied to the test patients of the other 9 institutes. RESULTS: The overall inter-institute variability of DVH/Dmean ipsilateral lung dose prediction, was less than 2% (20%-80% dose range) and 0.55 Gy respectively (1SD) for a 40 Gy in 15 fraction schedule; it was < 0.2 Gy for other OARs. Institute 6 showed the lowest mean dose prediction value and no overlap between PTV and ipsilateral lung. Once excluded, the predicted ipsilateral lung Dmean was correlated with median PTV D99% (R2 = 0.78). PC1 values were always within the range of applicability (90th percentile) for 7 models: for 2 models they were outside in 1/18 cases. For the model of institute 6, it failed in 7/18 cases. The impact of inter-institute variability of dose calculation was tested and found to be almost negligible. CONCLUSIONS: Results show limited inter-institute variability of plan prediction models translating in high inter-institute interchangeability, except for one of ten institutes. These results encourage future investigations in generating benchmarks for plan prediction incorporating inter-institute variability.


Assuntos
Neoplasias da Mama , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Feminino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radioterapia Conformacional/métodos , Mama/efeitos da radiação , Neoplasias da Mama/radioterapia , Órgãos em Risco/efeitos da radiação
6.
Med Phys ; 49(1): 568-578, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34778990

RESUMO

PURPOSE: We investigated the dose enhancement and internalization of gold nanoparticles (AuNPs) used as a radiosensitizer agent for rotational radiotherapy of breast cancer using a kilovoltage (kV) X-ray beam. METHODS: Human breast cancer cells MDA-MB-231 were incubated with or without 100 µg/mL (4.87 nM) or 200 µg/mL (9.74 nM) 15 nm AuNPs and irradiated with 100 kV, 190 kV, or 6 MV X-rays. To assess the toxicity of the AuNPs, we performed a Sulforhodamine B assay. Using atomic absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, and time-lapse optical microscopy (rate of 2 frames per minute), we carried out a quantitative assessment of the amount of gold internalized by MDA-MB-231 cells and a characterization of the static and dynamical aspects of this internalization process. RESULTS: No effect of AuNPs alone was shown on cell viability. Time-lapse optical microscopy showed for the first time AuNPs cellular uptake and the dynamics of AuNPs internalization. Electron microscopy demonstrated AuNPs localization in endosomal vesicles, preferentially in the perinuclear region. After irradiation at doses up to 2 Gy, cell survival fraction curves showed increased mortality with AuNPs, with respect to irradiation without AuNPs. The highest effect of radioenhancement by AuNPs (at 9.74 nM AuNPs concentration) was observed at 190 kV showing a dose enhancement factor of 1.33 ± 0.06 (1.34 ± 0.02 at 100 kV), while at 6 MV it was 1.14 ± 0.06. CONCLUSIONS: The observed radio-sensitization effect is promising for future radio-enhanced kV radiotherapy of breast cancer and quantitatively in the order of previous observations for 15 nm AuNPs. These results of a significant dose enhancement were obtained at 15 nm AuNPs concentration as low as several nanomolar units, at dose levels typical of a single dose fraction in a radiotherapy session. Dynamical behavior of the 3D spatial distribution of 15 nm AuNPs outside the nucleus of single breast cancer cell was observed, with possible implications for future models of AuNPs sensitization.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Ouro , Humanos , Fótons , Radiossensibilizantes/farmacologia , Raios X
7.
Front Oncol ; 11: 712423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504790

RESUMO

PURPOSE: To implement Knowledge Based (KB) automatic planning for right and left-sided whole breast treatment through a new volumetric technique (ViTAT, Virtual Tangential-fields Arc Therapy) mimicking conventional tangential fields (TF) irradiation. MATERIALS AND METHOD: A total of 193 clinical plans delivering TF with wedged or field-in-field beams were selected to train two KB-models for right(R) and left(L) sided breast cancer patients using the RapidPlan (RP) tool implemented in the Varian Eclipse system. Then, a template for ViTAT optimization, incorporating individual KB-optimized constraints, was interactively fine-tuned. ViTAT plans consisted of four arcs (6 MV) with start/stop angles consistent with the TF geometry variability within our population; the delivery was completely blocked along the arcs, apart from the first and last 20° of rotation for each arc. Optimized fine-tuned KB templates for automatic plan optimization were generated. Validation tests were performed on 60 new patients equally divided in R and L breast treatment: KB automatic ViTAT-plans (KB-ViTAT) were compared against the original TF plans in terms of OARs/PTVs dose-volume parameters. Wilcoxon-tests were used to assess the statistically significant differences. RESULTS: KB models were successfully generated for both L and R sides. Overall, 1(3%) and 7(23%) out of 30 automatic KB-ViTAT plans were unacceptable compared to TF for R and L side, respectively. After the manual refinement of the start/stop angles, KB-ViTAT plans well fitted TF-performances for these patients as well. PTV coverage was comparable, while PTV D1% was improved with KB-ViTAT by R:0.4/L:0.2 Gy (p < 0.05); ipsilateral OARs Dmean were similar with a slight (i.e., few % volume) improvement/worsening in the 15-35 Gy/2-15 Gy range, respectively. KB-ViTAT better spared contralateral OARs: Dmean of contralateral OARs was 0.1 Gy lower (p < 0.05); integral dose was R:5%/L:8% lower (p < 0.05) than TF. The overall time for the automatic plan optimization and final dose calculation was 12 ± 2 minutes. CONCLUSIONS: Fully automatic KB-optimization of ViTAT can efficiently replace manually optimized TF planning for whole breast irradiation. This approach was clinically implemented in our institute and may be suggested as a large-scale strategy for efficiently replacing manual planning with large sparing of time, elimination of inter-planner variability and of, seldomly occurring, sub-optimal manual plans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA