Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 196(1): 67-77, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18180318

RESUMO

Although there is significant evidence for progesterone's role as an immunomodulator, nuclear progesterone receptors have not been consistently identified in immune cells. Recently, three new putative membrane progesterone receptors (mPRs), mPRalpha, mPRbeta, and mPRgamma have been described. The objective of this study was to examine whether mPRs are expressed in peripheral blood leukocytes (PBLs) in women of reproductive age, and to further characterize them in T lymphocytes and immortalized T cells (Jurkat cells). Transcripts for mPRalpha and mPRbeta but not mPRgamma, were detected by RT-PCR in PBLs, T lymphocytes, and Jurkat cells. Western blot analysis showed the presence of the mPRalpha and mPRbeta proteins on cell membranes of T lymphocytes and Jurkat cells. Expression of the mPRalpha mRNA was upregulated in the luteal phase of the menstrual cycle in cluster of differentiation (CD)8+, but not in CD4+, T lymphocytes. Radioreceptor assays revealed specific [(3)H]progesterone binding to T- and Jurkat cell membranes (K(d) 4.25 nM) characteristic of steroid membrane receptors. Progesterone activated an inhibitory G-protein (G(i)), suggesting that mPRs are coupled to G(i) in Jurkat cells. These results suggest a potential novel mechanism for progesterone's immunoregulatory function through activation of mPRs.


Assuntos
Membrana Celular/química , Proteínas de Ligação ao GTP/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/genética , Linfócitos T/química , Adulto , Membrana Celular/metabolismo , Feminino , Citometria de Fluxo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Técnicas de Imunoadsorção , Células Jurkat , Fase Luteal , Progesterona/metabolismo , RNA Mensageiro/análise , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Radioisótopos de Enxofre , Linfócitos T/metabolismo
2.
Endocrinology ; 147(3): 1097-121, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16306079

RESUMO

Histological evaluation of endometrium has been the gold standard for clinical diagnosis and management of women with endometrial disorders. However, several recent studies have questioned the accuracy and utility of such evaluation, mainly because of significant intra- and interobserver variations in histological interpretation. To examine the possibility that biochemical or molecular signatures of endometrium may prove to be more useful, we have investigated whole-genome molecular phenotyping (54,600 genes and expressed sequence tags) of this tissue sampled across the cycle in 28 normo-ovulatory women, using high-density oligonucleotide microarrays. Unsupervised principal component analysis of all samples revealed that samples self-cluster into four groups consistent with histological phenotypes of proliferative (PE), early-secretory (ESE), mid-secretory (MSE), and late-secretory (LSE) endometrium. Independent hierarchical clustering analysis revealed equivalent results, with two major dendrogram branches corresponding to PE/ESE and MSE/LSE and sub-branching into the four respective phases with heterogeneity among samples within each sub-branch. K-means clustering of genes revealed four major patterns of gene expression (high in PE, high in ESE, high in MSE, and high in LSE), and gene ontology analysis of these clusters demonstrated cycle-phase-specific biological processes and molecular functions. Six samples with ambiguous histology were identically assignable to a cycle phase by both principal component analysis and hierarchical clustering. Additionally, pairwise comparisons of relative gene expression across the cycle revealed genes/families that clearly distinguish the transitions of PE-->ESE, ESE-->MSE, and MSE-->LSE, including receptomes and signaling pathways. Select genes were validated by quantitative RT-PCR. Overall, the results demonstrate that endometrial samples obtained by two different sampling techniques (biopsy and curetting hysterectomy specimens) from subjects who are as normal as possible in a human study and including those with unknown histology, can be classified by their molecular signatures and correspond to known phases of the menstrual cycle with identical results using two independent analytical methods. Also, the results enable global identification of biological processes and molecular mechanisms that occur dynamically in the endometrium in the changing steroid hormone milieu across the menstrual cycle in normo-ovulatory women. The results underscore the potential of gene expression profiling for developing molecular diagnostics of endometrial normalcy and abnormalities and identifying molecular targets for therapeutic purposes in endometrial disorders.


Assuntos
Endométrio/metabolismo , Regulação da Expressão Gênica , Ciclo Menstrual/fisiologia , Modelos Biológicos , Ovulação , Doenças Uterinas/genética , Adulto , Algoritmos , Biópsia , Análise por Conglomerados , Regulação para Baixo , Neoplasias do Endométrio/metabolismo , Endométrio/fisiologia , Feminino , Perfilação da Expressão Gênica , Genoma , Humanos , Pessoa de Meia-Idade , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Esteroides/metabolismo , Regulação para Cima , Doenças Uterinas/patologia , Útero/metabolismo , Útero/fisiologia
3.
J Clin Endocrinol Metab ; 90(3): 1599-606, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15613433

RESUMO

IGF binding protein-1 (IGFBP-1) is a major product of decidualized human endometrial stromal cells and decidua, and as a modulator of IGF action and/or by independent mechanisms, it regulates cell growth and differentiation and embryonic implantation in these tissues. IGFBP-1 secretion is primarily stimulated by progesterone and cAMP and is inhibited by insulin and IGFs. The signaling pathways mediating the latter are not well defined, and the current study was conducted to determine which pathways mediate the effects of insulin on IGFBP-1 mRNA and protein expression by human endometrial stromal cells decidualized in vitro by progesterone. Cells were cultured and treated with different combinations of insulin; wortmannin, an inhibitor of the phosphatidylinositide-3-kinase (PI3-kinase) pathway; and PD98059, an inhibitor of the MAPK pathway. IGFBP-1 mRNA was determined by real-time PCR, and protein secretion in the conditioned medium was measured by ELISA. Activation of the PI3-kinase and the MAPK pathways was assessed by the detection of phosphorylated AKT and ERK in Western blots, respectively. Insulin inhibited IGFBP-1 mRNA and protein secretion in a dose-dependent fashion, with an ED(50) for the latter 0.127 ng/ml (21.6 pm). Inhibitor studies revealed that at low doses, insulin acts through the PI3-kinase pathway, whereas at higher levels it also activates the MAPK pathway in the inhibition of IGFBP-1. The data demonstrate that human endometrium is a target for insulin action in the regulation of IGFBP-1. At physiological levels insulin likely plays a homeostatic role for energy metabolism in the endometrium, and in hyperinsulinemic states, insulin action on the endometrium may activate cellular mitosis via the MAPK pathway and perhaps predispose this tissue to hyperplasia and/or cancer.


Assuntos
Endométrio/citologia , Hipoglicemiantes/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células Estromais/metabolismo , Adulto , Células Cultivadas , Relação Dose-Resposta a Droga , Endométrio/fisiologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , RNA Mensageiro/análise , Células Estromais/citologia
4.
J Clin Endocrinol Metab ; 88(8): 3860-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12915680

RESUMO

Members of the Wnt family of signaling molecules are important in cell specification and epithelial-mesenchymal interactions, and targeted gene deletion of Wnt-7a in mice results in complete absence of uterine glands and infertility. To assess potential roles of the Wnt family in human endometrium, an endocrine-responsive tissue, we investigated in the proliferative and secretory phases of the menstrual cycle, endometrial expression of several Wnt ligands (Wnt-2, Wnt-3, Wnt-4, Wnt-5a, Wnt-7a, and Wnt-8b), receptors [Frizzled (Fz)-6 and low-density lipoprotein receptor-related protein (LRP)-6], inhibitors [FrpHE and Dickkopf (Dkk)-1], and downstream effectors (Dishevelled-1, glycogen synthase kinase-3beta, and beta-catenin) by RT-PCR, real-time PCR and in situ hybridization. No significant menstrual cycle dependence of the Wnt ligands (except Wnt-3), receptors, or downstream effectors, was observed. Wnt-3 increased 4.7-fold in proliferative compared with secretory endometrium (P < 0.05). However, both inhibitors showed dramatic changes during the cycle, with 22.2-fold down-regulation (P < 0.05) of FrpHE and 234.3-fold up-regulation (P < 0.001) of Dkk-1 in the secretory, compared with the proliferative phase. In situ hybridization revealed cell-specific expression of different Wnt family genes in human endometrium. Wnt-7a was exclusively expressed in the luminal epithelium, and Fz-6 and beta-catenin were expressed in both epithelium and stroma, without any apparent change during the cycle. Both FrpHE and Dkk-1 expression were restricted to the stroma, during the proliferative and secretory phase, respectively. These unique expression patterns of Wnt family genes in different cell types of endometrium and the differential regulation of the inhibitors during the proliferative and secretory phase of the menstrual cycle strongly suggest functions for a Wnt signaling dialog between epithelial and stromal components in human endometrium. Also, they underscore the likely importance of this family during endometrial development, differentiation and implantation.


Assuntos
Endométrio/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra , Adulto , Algoritmos , Endométrio/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Hibridização In Situ , Gravidez , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt , Proteína Wnt2
5.
Endocrinology ; 144(7): 2870-81, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12810542

RESUMO

Endometriosis is clinically associated with pelvic pain and infertility, with implantation failure strongly suggested as an underlying cause for the observed infertility. Eutopic endometrium of women with endometriosis provides a unique experimental paradigm for investigation into molecular mechanisms of reproductive dysfunction and an opportunity to identify specific markers for this disease. We applied paralleled gene expression profiling using high-density oligonucleotide microarrays to investigate differentially regulated genes in endometrium from women with vs. without endometriosis. Fifteen endometrial biopsy samples (obtained during the window of implantation from eight subjects with and seven subjects without endometriosis) were processed for expression profiling on Affymetrix Hu95A microarrays. Data analysis was conducted with GeneChip Analysis Suite, version 4.01, and GeneSpring version 4.0.4. Nonparametric testing was applied, using a P value of 0.05, to assess statistical significance. Of the 12,686 genes analyzed, 91 genes were significantly increased more than 2-fold in their expression, and 115 genes were decreased more than 2-fold. Unsupervised clustering demonstrated down-regulation of several known cell adhesion molecules, endometrial epithelial secreted proteins, and proteins not previously known to be involved in the pathogenesis of endometriosis, as well as up-regulated genes. Selected dysregulated genes were randomly chosen and validated with RT-PCR and/or Northern/dot-blot analyses, and confirmed up-regulation of collagen alpha2 type I, 2.6-fold; bile salt export pump, 2.0-fold; and down-regulation of N-acetylglucosamine-6-O-sulfotransferase (important in synthesis of L-selectin ligands), 1.7-fold; glycodelin, 51.5-fold; integrin alpha2, 1.8-fold; and B61 (Ephrin A1), 4.5-fold. Two-way overlapping layer analysis used to compare endometrial genes in the window of implantation from women with and without endometriosis further identified three unique groups of target genes, which differ with respect to the implantation window and the presence of disease. Group 1 target genes are up-regulated during the normal window of implantation but significantly decreased in women with endometriosis: IL-15, proline-rich protein, B61, Dickkopf-1, glycodelin, N-acetylglucosamine-6-O-sulfotransferase, G0S2 protein, and purine nucleoside phosphorylase. Group 2 genes are normally down-regulated during the window of implantation but are significantly increased with endometriosis: semaphorin E, neuronal olfactomedin-related endoplasmic reticulum localized protein mRNA and Sam68-like phosphotyrosine protein alpha. Group 3 consists of a single gene, neuronal pentraxin II, normally down-regulated during the window of implantation and further decreased in endometrium from women with endometriosis. The data support dysregulation of select genes leading to an inhospitable environment for implantation, including genes involved in embryonic attachment, embryo toxicity, immune dysfunction, and apoptotic responses, as well as genes likely contributing to the pathogenesis of endometriosis, including aromatase, progesterone receptor, angiogenic factors, and others. Identification and validation of selected genes and their functions will contribute to uncovering previously unknown mechanism(s) underlying implantation failure in women with endometriosis and infertility, mechanisms underlying the pathogenesis of endometriosis and providing potential new targets for diagnostic screening and intervention.


Assuntos
Endometriose/genética , Endometriose/fisiopatologia , Perfilação da Expressão Gênica , Infertilidade Feminina/genética , Infertilidade Feminina/fisiopatologia , Northern Blotting , Implantação do Embrião/fisiologia , Endométrio/fisiopatologia , Feminino , Perfilação da Expressão Gênica/normas , Humanos , Família Multigênica , Reprodutibilidade dos Testes
6.
Endocrinology ; 143(6): 2119-38, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021176

RESUMO

Implantation in humans is a complex process that is temporally and spatially restricted. Over the past decade, using a one-by-one approach, several genes and gene products that may participate in this process have been identified in secretory phase endometrium. Herein, we have investigated global gene expression during the window of implantation (peak E2 and progesterone levels) in well characterized human endometrial biopsies timed to the LH surge, compared with the late proliferative phase (peak E2 level) of the menstrual cycle. Tissues were processed for poly(A(+)) RNA and hybridization of chemically fragmented, biotinylated cRNAs on high density oligonucleotide microarrays, screening for 12,686 genes and expressed sequence tags. After data normalization, mean values were obtained for gene readouts and fold ratios were derived comparing genes up- and down-regulated in the window of implantation vs. the late proliferative phase. Nonparametric testing revealed 156 significantly (P < 0.05) up-regulated genes and 377 significantly down-regulated genes in the implantation window. Up-regulated genes included those for cholesterol trafficking and transport [apolipoprotein (Apo)E being the most induced gene, 100-fold], prostaglandin (PG) biosynthesis (PLA2) and action (PGE2 receptor), proteoglycan synthesis (glucuronyltransferase), secretory proteins [glycodelin, mammaglobin, Dickkopf-1 (Dkk-1, a Wnt inhibitor)], IGF binding protein (IGFBP), and TGF-beta superfamilies, signal transduction, extracellular matrix components (osteopontin, laminin), neurotransmitter synthesis (monoamine oxidase) and receptors (gamma aminobutyric acid A receptor pi subunit), numerous immune modulators, detoxification genes (metallothioneins), and genes involved in water and ion transport [e.g. Clostridia Perfringens Enterotoxin (CPE) 1 receptor (CPE1-R) and K(+) ion channel], among others. Down-regulated genes included intestinal trefoil factor (ITF) [the most repressed gene (50-fold)], matrilysin, members of the G protein-coupled receptor signaling pathway, frizzled-related protein (FrpHE, a Wnt antagonist), transcription factors, TGF-beta signaling pathway members, immune modulators (major histocompatibility complex class II subunits), and other cellular functions. Validation of select genes was conducted by Northern analysis and RT-PCR using RNA from endometrial biopsies obtained in the proliferative phase and the implantation window and by RT-PCR using RNA from cultured endometrial epithelial and stromal cells. These approaches confirmed up-regulation of genes corresponding to IGFBP-1, glycodelin, CPE1-R, Dkk-1, mammaglobin, and ApoD and down-regulation for PR membrane component 1, FrpHE, matrilysin, and ITF, as with the microarray data. Cultured endometrial epithelial cells were found to express mRNAs for glycodelin, CPE-1R, Dkk-1, the gamma aminobutyric acid A receptor pi subunit, mammaglobin, matrilysin, ITF and PR membrane component 1. The expression of IGFBP-1, CPE1-R, Dkk-1, and ApoD mRNAs increased upon decidualization of stromal cells in vitro with progesterone after E2 priming, whereas FrpHE decreased, consistent with the microarray results. Overall, the data demonstrate numerous genes and gene families not heretofore recognized in human endometrium or associated with the implantation process. Reassuringly, several gene products, known to be differentially expressed in the implantation window or in secretory endometrium, were verified, and the striking regulation of select secretory proteins, water and ion channels, signaling molecules, and immune modulators underscores the important roles of these systems in endometrial development and endometrial-embryonic interactions. In addition, the current study validates using high density oligonucleotide microarray technology to investigate global changes in gene expression in human endometrium.


Assuntos
Implantação do Embrião/genética , Endométrio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Adulto , Northern Blotting , Células Cultivadas , Impressões Digitais de DNA , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Endométrio/citologia , Células Epiteliais/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/fisiologia , Regulação para Cima/genética , Regulação para Cima/fisiologia
7.
Genome Res ; 11(11): 1899-912, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11691855

RESUMO

To meet the demands of developing lead drugs for the profusion of human genes being sequenced as part of the human genome project, we developed a high-throughput assay construction method in yeast. A set of optimized techniques allows us to rapidly transfer large numbers of heterologous cDNAs from nonyeast plasmids into yeast expression vectors. These high- or low-copy yeast expression plasmids are then converted quickly into integration-competent vectors for phenotypic profiling of the heterologous gene products. The process was validated first by testing proteins of diverse function, such as p38, poly(ADP-ribose) polymerase-1, and PI 3-kinase, by making active-site mutations and using existing small molecule inhibitors of these proteins. For less well-characterized genes, a novel random mutagenesis scheme was developed that allows a combination selection/screen for mutations that retain full-length expression and yet reverse a growth phenotype in yeast. A broad range of proteins in different functional classes has been profiled, with an average yield for growth interference phenotypes of approximately 30%. The ease of manipulation of the yeast genome affords us the opportunity to approach drug discovery and exploratory biology on a genomic scale and shortens assay development time significantly.


Assuntos
DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Clonagem Molecular/métodos , Inibidores Enzimáticos/farmacologia , Vetores Genéticos/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Dados de Sequência Molecular , Mutagênese , Fenótipo , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sensibilidade e Especificidade , Proteínas Quinases p38 Ativadas por Mitógeno
8.
Cancer Res ; 61(10): 4175-83, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11358842

RESUMO

Multicellular organisms must have means of preserving their genomic integrity or face catastrophic consequences such as uncontrolled cell proliferation or massive cell death. One response is a modification of nuclear proteins by the addition and removal of polymers of ADP-ribose that modulate the properties of DNA-binding proteins involved in DNA repair and metabolism. These ADP-ribose units are added by poly(ADP-ribose) polymerase (PARP) and removed by poly(ADP-ribose) glycohydrolase. Although budding yeast Saccharomyces cerevisiae does not possess proteins with significant sequence similarity to the human PARP family of proteins, we identified novel small molecule inhibitors against two family members, PARP1 and PARP2, using a cell-based assay in yeast. The assay was based on the reversal of growth inhibition caused by the heterologous expression of either PARP1 or PARP2. Validation of the assay was achieved by showing that the growth inhibition was relieved by a mutation in a single residue in the catalytic site of PARP1 or PARP2 or exposure of yeast to a known PARP1 inhibitor, 6(5H)-phenanthridinone. In separate experiments, when a putative protein regulator of PARP activity, human poly(ADP-ribose) glycohydrolase, was coexpressed with PARP1 or PARP2, yeast growth was restored. Finally, the inhibitors identified by screening the yeast assay are active in a mammalian PARP biochemical assay and inhibit PARP1 and PARP2 activity in yeast cell extracts. Thus, our data reflect the strength of using yeast to identify small molecule inhibitors of therapeutically relevant gene families, including those that are not found in yeast, such as PARP. The resultant inhibitors have two critical uses (a) as leads for drug development and (b) as tools to dissect cellular function.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA