Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 745, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135454

RESUMO

The spatial pattern of vegetation patchiness may follow universal characteristic rules when the system is close to critical transitions between alternative states, which improves the anticipation of ecosystem-level state changes which are currently difficult to detect in real systems. However, the spatial patterning of vegetation patches in temperature-driven ecosystems have not been investigated yet. Here, using high-resolution imagery from 1972 to 2013 and a stochastic cellular automata model, we show that in a North American coastal ecosystem where woody plant encroachment has been happening, the size distribution of woody patches follows a power law when the system approaches a critical transition, which is sustained by the local positive feedbacks between vegetation and the surrounding microclimate. Therefore, the observed power law distribution of woody vegetation patchiness may be suggestive of critical transitions associated with temperature-driven woody plant encroachment in coastal and potentially other ecosystems.


Assuntos
Ecossistema , Microclima , Desenvolvimento Vegetal/fisiologia , Árvores/crescimento & desenvolvimento , Retroalimentação , Plantas/classificação , Imagens de Satélites , Árvores/classificação , Tempo (Meteorologia)
2.
Glob Chang Biol ; 25(7): 2419-2430, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932269

RESUMO

Due to their position at the land-sea interface, barrier islands are vulnerable to both oceanic and atmospheric climate change-related drivers. In response to relative sea-level rise, barrier islands tend to migrate landward via overwash processes which deposit sediment onto the backbarrier marsh, thus maintaining elevation above sea level. In this paper, we assess the importance of interior upland vegetation and sediment transport (from upland to marsh) on the movement of the marsh-upland boundary in a transgressive barrier system along the mid-Atlantic Coast. We hypothesize that recent woody expansion is altering the rate of marsh to upland conversion. Using Landsat imagery over a 32 year time period (1984-2016), we quantify transitions between land cover (bare, grassland, woody vegetation, and marsh) and the marsh-upland boundary. We find that the Virginia Barrier Islands have both gains and losses in backbarrier marsh and upland, with 19% net loss from the system during the timeframe of the study and increased variance in marsh to upland conversion. This is consistent with recent work indicating a shift toward increasing rates of landward barrier island migration. Despite a net loss of upland area, macroclimatic winter warming resulted in 41% increase in woody vegetation in protected, low-elevation areas, introducing new ecological scenarios that increase resistance to sediment movement from upland to marsh. Our analysis demonstrates how the interplay between elevation and interior island vegetative cover influences landward migration of the boundary between upland and marsh (a previously underappreciated indicator that an island is migrating), and thus, the importance of including ecological processes in the island interior into coastal modeling of barrier island migration and sediment movement across the barrier landscape.


Assuntos
Mudança Climática , Áreas Alagadas , Ilhas , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA