Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839778

RESUMO

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Assuntos
Neoplasias , Proteômica , Biomarcadores Tumorais/genética , Linhagem Celular , Humanos , Neoplasias/genética , Proteoma/metabolismo , Proteômica/métodos
2.
Bioinformatics ; 37(24): 4719-4726, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323970

RESUMO

MOTIVATION: The output of electrospray ionization-liquid chromatography mass spectrometry (ESI-LC-MS) is influenced by multiple sources of noise and major contributors can be broadly categorized as baseline, random and chemical noise. Noise has a negative impact on the identification and quantification of peptides, which influences the reliability and reproducibility of MS-based proteomics data. Most attempts at denoising have been made on either spectra or chromatograms independently, thus, important 2D information is lost because the mass-to-charge ratio and retention time dimensions are not considered jointly. RESULTS: This article presents a novel technique for denoising raw ESI-LC-MS data via 2D undecimated wavelet transform, which is applied to proteomics data acquired by data-independent acquisition MS (DIA-MS). We demonstrate that denoising DIA-MS data results in the improvement of peptide identification and quantification in complex biological samples. AVAILABILITY AND IMPLEMENTATION: The software is available on Github (https://github.com/CMRI-ProCan/CRANE). The datasets were obtained from ProteomeXchange (Identifiers-PXD002952 and PXD008651). Preliminary data and intermediate files are available via ProteomeXchange (Identifiers-PXD020529 and PXD025103). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Peptídeos , Software , Reprodutibilidade dos Testes , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos
3.
Nat Commun ; 11(1): 3793, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732981

RESUMO

Reproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with ~5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics.


Assuntos
Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Neoplasias Ovarianas , Neoplasias da Próstata , Reprodutibilidade dos Testes , Saccharomyces cerevisiae
4.
Sci Rep ; 10(1): 8939, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488104

RESUMO

The closed nature of vendor file formats in mass spectrometry is a significant barrier to progress in developing robust bioinformatics software. In response, the community has developed the open mzML format, implemented in XML and based on controlled vocabularies. Widely adopted, mzML is an important step forward; however, it suffers from two challenges that are particularly apparent as the field moves to high-throughput proteomics: large increase in file size, and a largely sequential I/O access pattern. Described here is 'toffee', an open, random I/O format backed by HDF5, with lossless compression that gives file sizes similar to the original vendor format and can be reconverted back to mzML without penalty. It is shown that mzML and toffee are equivalent when processing data using OpenSWATH algorithms, in additional to novel applications that are enabled by new data access patterns. For instance, a peptide-centric deep-learning pipeline for peptide identification is proposed. Documentation and examples are available at https://toffee.readthedocs.io, and all code is MIT licensed at https://bitbucket.org/cmriprocan/toffee.

5.
Proteomics ; 19(21-22): e1900109, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31321850

RESUMO

The cancer tissue proteome has enormous potential as a source of novel predictive biomarkers in oncology. Progress in the development of mass spectrometry (MS)-based tissue proteomics now presents an opportunity to exploit this by applying the strategies of comprehensive molecular profiling and big-data analytics that are refined in other fields of 'omics research. ProCan (ProCan is a registered trademark) is a program aiming to generate high-quality tissue proteomic data across a broad spectrum of cancer types. It is based on data-independent acquisition-MS proteomic analysis of annotated tissue samples sourced through collaboration with expert clinical and cancer research groups. The practical requirements of a high-throughput translational research program have shaped the approach that ProCan is taking to address challenges in study design, sample preparation, raw data acquisition, and data analysis. The ultimate goal is to establish a large proteomics knowledge-base that, in combination with other cancer 'omics data, will accelerate cancer research.


Assuntos
Neoplasias/genética , Proteoma/genética , Proteômica/estatística & dados numéricos , Software , Biomarcadores Tumorais/genética , Análise de Dados , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Espectrometria de Massas , Neoplasias/patologia , Manejo de Espécimes
6.
J Proteome Res ; 18(3): 1019-1031, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652484

RESUMO

In the current study, we show how ProCan90, a curated data set of HEK293 technical replicates, can be used to optimize the configuration options for algorithms in the OpenSWATH pipeline. Furthermore, we use this case study as a proof of concept for horizontal scaling of such a pipeline to allow 45 810 computational analysis runs of OpenSWATH to be completed within four and a half days on a budget of US $10 000. Through the use of Amazon Web Services (AWS), we have successfully processed each of the ProCan 90 files with 506 combinations of input parameters. In total, the project consumed more than 340 000 core hours of compute and generated in excess of 26 TB of data. Using the resulting data and a set of quantitative metrics, we show an analysis pathway that allows the calculation of two optimal parameter sets, one for a compute rich environment (where run time is not a constraint), and another for a compute poor environment (where run time is optimized). For the same input files and the compute rich parameter set, we show a 29.8% improvement in the number of quality protein (>2 peptide) identifications found compared to the current OpenSWATH defaults, with negligible adverse effects on quantification reproducibility or drop in identification confidence, and a median run time of 75 min (103% increase). For the compute poor parameter set, we find a 55% improvement in the run time from the default parameter set, at the expense of a 3.4% decrease in the number of quality protein identifications, and an intensity CV decrease from 14.0% to 13.7%.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas/normas , Conjuntos de Dados como Assunto/normas , Células HEK293 , Humanos , Proteínas/análise , Proteômica/métodos , Reprodutibilidade dos Testes , Fatores de Tempo
7.
Interface Focus ; 8(1): 20170019, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29285346

RESUMO

There is emerging evidence suggesting that Alzheimer's disease is a vascular disorder, caused by impaired cerebral perfusion, which may be promoted by cardiovascular risk factors that are strongly influenced by lifestyle. In order to develop an understanding of the exact nature of such a hypothesis, a biomechanical understanding of the influence of lifestyle factors is pursued. An extended poroelastic model of perfused parenchymal tissue coupled with separate workflows concerning subject-specific meshes, permeability tensor maps and cerebral blood flow variability is used. The subject-specific datasets used in the modelling of this paper were collected as part of prospective data collection. Two cases were simulated involving male, non-smokers (control and mild cognitive impairment (MCI) case) during two states of activity (high and low). Results showed a marginally reduced clearance of cerebrospinal fluid (CSF)/interstitial fluid (ISF), elevated parenchymal tissue displacement and CSF/ISF accumulation and drainage in the MCI case. The peak perfusion remained at 8 mm s-1 between the two cases.

9.
Phys Rev E ; 93(5): 053105, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300976

RESUMO

We explore the effect that equation of state (EOS) thermodynamics has on shock-driven cavity-collapse processes. We account for full, multidimensional, unsteady hydrodynamics and incorporate a range of relevant EOSs (polytropic, QEOS-type, and SESAME). In doing so, we show that simplified analytic EOSs, like ideal gas, capture certain critical parameters of the collapse such as velocity of the main transverse jet and pressure at jet strike, while also providing a good representation of overall trends. However, more sophisticated EOSs yield different and more relevant estimates of temperature and density, especially for higher incident shock strengths. We model incident shocks ranging from 0.1 to 1000 GPa, the latter being of interest in investigating the warm dense matter regime for which experimental and theoretical EOS data are difficult to obtain. At certain shock strengths, there is a factor of two difference in predicted density between QEOS-type and SESAME EOS, indicating cavity collapse as an experimental method for exploring EOS in this range.

10.
Med Eng Phys ; 38(1): 48-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26749338

RESUMO

Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model).


Assuntos
Edema Encefálico/metabolismo , Elasticidade , Fenômenos Biomecânicos , Edema Encefálico/diagnóstico , Edema Encefálico/patologia , Edema Encefálico/cirurgia , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Porosidade , Ventriculostomia
11.
J Biomech ; 49(11): 2306-2312, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-26671218

RESUMO

This study proposes the implementation of a fully dynamic four-network poroelastic model which is underpinned by multiple-network poroelastic theory (MPET), in order to account for the effects of varying stages of aqueductal stenosis and atresia during acute hydrocephalus. The innovation of the fully dynamic MPET implementation is that it avoids the commonplace assumption of quasi-steady behaviour; instead, it incorporates all transient terms in the casting of the equations and in the numerical solution of the resulting discrete system. It was observed that the application of mild stenosis allows for a constant value of amalgamated ventricular displacement in under 2.4h, whereas the application of a severe stenosis delays this settlement to approximately 10h. A completely blocked aqueduct does not show a clear sign of reaching a steady ventricular displacement after 24h. The increasing ventricular pressure (complemented with ventriculomegaly) during severe stenosis is causing the trans-parenchymal tissue region to respond, and this coping mechanism is most attenuated at the regions closest to the skull and the ventricles. After 9h, the parenchymal tissue shows to be coping well with the additional pressure burden, since both ventriculomegaly and ventricular CSF (cerebrospinal fluid) pressure show small increases between 9 and 24h. Localised swelling in the periventricular region could also be observed through CSF fluid content, whilst dilation results showed stretch and compression of cortical tissue adjacent to the ventricles and skull.


Assuntos
Hidrocefalia/fisiopatologia , Modelos Biológicos , Adulto , Pressão do Líquido Cefalorraquidiano , Elasticidade , Humanos
12.
PLoS One ; 8(12): e84577, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391968

RESUMO

This study proposes the implementation of a Multiple-Network Poroelastic Theory (MPET) model coupled with finite-volume computational fluid dynamics for the purpose of studying, in detail, the effects of obstructing CSF transport within an anatomically accurate cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. A key novelty in the model is the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This was done in order to account for the Aquaporin-4-mediated swelling characteristics. The aim of this varying permeability compartment was to bring to light a feedback mechanism that could counteract the effects of ventricular dilation and subsequent elevations of CSF pressure through the efflux of excess CSF into the blood system. This model is used to demonstrate the impact of aqueductal stenosis and fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. We observed peak CSF velocities in the aqueduct of the order of 15.6 cm/s in the healthy case, 45.4 cm/s and 72.8 cm/s for the mild and severe cases respectively. The application of ETV reduced the aqueductal velocity to levels around 16-17 cm/s. Ventricular displacement, CSF pressure, wall shear stress (WSS) and pressure difference between lateral and fourth ventricles (ΔP) increased with applied stenosis, and subsequently dropped to nominal levels with the application of ETV. The greatest reversal of the effects of atresia come by opting for ETV rather than the more complicated procedure of EFV.


Assuntos
Líquido Cefalorraquidiano/fisiologia , Biologia Computacional/métodos , Endoscopia/métodos , Hidrocefalia/cirurgia , Modelos Biológicos , Ventriculostomia/métodos , Transporte Biológico/fisiologia , Plexo Corióideo/anatomia & histologia , Humanos , Hidrodinâmica , Pressão , Resultado do Tratamento
13.
Artigo em Inglês | MEDLINE | ID: mdl-21096958

RESUMO

This work proposes a new theoretical framework for the water transport in the cerebral environment. The approach is based on Multiple-Network Poroelastic Theory (MPET) and is a natural extension of poroelasticity, a well reported technique applied to cerebrospinal fluid (CSF) transport. MPET accounts for the transport of CSF and blood simultaneously, as they permeate and deform the cerebral tissue. To demonstrate the strength of this approach, MPET is applied to one of the most paradoxical and non-intuitive cerebral pathologies, Normal Pressure Hydrocephalus (NPH). It is shown, for the first time, that clinically relevant ventricular deformations can be observed in the case of totally unobstructed, patient-specific aqueducts. Cerebral diseases are recognised as pivotal in healthcare; they relate to a whole host of unmet clinical needs. We are convinced that basic understanding of fluid transport, as provided by a validated MPET model, is the most promising way to address these needs meaningfully, in a clinical setting.


Assuntos
Hidrocefalia de Pressão Normal/líquido cefalorraquidiano , Hidrocefalia de Pressão Normal/fisiopatologia , Modelos Biológicos , Algoritmos , Líquido Cefalorraquidiano/fisiologia , Elasticidade , Humanos , Imageamento por Ressonância Magnética , Porosidade , Reprodutibilidade dos Testes , Pressão Ventricular/fisiologia
14.
IEEE Trans Biomed Eng ; 56(6): 1644-51, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19304478

RESUMO

This research uses a novel coupling of poroelastic theory and computational fluid dynamics to investigate acute hydrocephalus resulting from stenosis of the cerebral aqueduct. By coupling poroelastic theory with a multidimensional simulation of the cerebral aqueduct we are able to investigate, for the first time, the impact of physically relevant stenosis patterns on ventricular enlargement, accounting for the nonintuitive long time history responses of the ventricular system. Preliminary findings demonstrate clearly the importance that the fluidic-poroelastic coupling plays: ventricular enlargement is significantly smaller with local stenosis patterns and almost all of the observable pressure drop occurs across the stenosis. Short timescale effects [O(heartbeat)] are explored and their contribution to the long timescales interrogated.


Assuntos
Líquido Cefalorraquidiano/fisiologia , Simulação por Computador , Modelos Biológicos , Fluxo Pulsátil/fisiologia , Reologia/métodos , Doença Aguda , Aqueduto do Mesencéfalo/fisiologia , Constrição Patológica/fisiopatologia , Elasticidade , Humanos , Hidrocefalia/fisiopatologia , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA