Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 179: 124-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521334

RESUMO

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
2.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35486541

RESUMO

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutagênese Insercional , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Mol Cancer Ther ; 21(5): 821-830, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247925

RESUMO

NRG1 fusions are recurrent somatic genome alterations occurring across several tumor types, including invasive mucinous lung adenocarcinomas and pancreatic ductal adenocarcinomas and are potentially actionable genetic alterations in these cancers. We initially discovered CD74-NRG1 as the first NRG1 fusion in lung adenocarcinomas, and many additional fusion partners have since been identified. Here, we present the first CD74-NRG1 transgenic mouse model and provide evidence that ubiquitous expression of the CD74-NRG1 fusion protein in vivo leads to tumor development at high frequency. Furthermore, we show that ERBB2:ERBB3 heterodimerization is a mechanistic event in transformation by CD74-NRG1 binding physically to ERBB3 and that CD74-NRG1-expressing cells proliferate independent of supplemented NRG1 ligand. Thus, NRG1 gene fusions are recurrent driver oncogenes that cause oncogene dependency. Consistent with these findings, patients with NRG1 fusion-positive cancers respond to therapy targeting the ERBB2:ERBB3 receptors.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Carcinogênese/genética , Humanos , Camundongos , Neuregulina-1/genética , Oncogenes , Receptor ErbB-2/genética , Receptor ErbB-3/genética
4.
NPJ Precis Oncol ; 5(1): 102, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921211

RESUMO

Activation of MAPK signaling via BRAF mutations may limit the activity of EGFR inhibitors in EGFR-mutant lung cancer patients. However, the impact of BRAF mutations on the selection and fitness of emerging resistant clones during anti-EGFR therapy remains elusive. We tracked the evolution of subclonal mutations by whole-exome sequencing and performed clonal analyses of individual metastases during therapy. Complementary functional analyses of polyclonal EGFR-mutant cell pools showed a dose-dependent enrichment of BRAFV600E and a loss of EGFR inhibitor susceptibility. The clones remain stable and become vulnerable to combined EGFR, RAF, and MEK inhibition. Moreover, only osimertinib/trametinib combination treatment, but not monotherapy with either of these drugs, leads to robust tumor shrinkage in EGFR-driven xenograft models harboring BRAFV600E mutations. These data provide insights into the dynamics of clonal evolution of EGFR-mutant tumors and the therapeutic implications of BRAF co-mutations that may facilitate the development of treatment strategies to improve the prognosis of these patients.

5.
Nat Commun ; 12(1): 2048, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824345

RESUMO

Loss of TP53 and RB1 in treatment-naïve small cell lung cancer (SCLC) suggests selective pressure to inactivate cell death pathways prior to therapy. Yet, which of these pathways remain available in treatment-naïve SCLC is unknown. Here, through systemic analysis of cell death pathway availability in treatment-naïve SCLC, we identify non-neuroendocrine (NE) SCLC to be vulnerable to ferroptosis through subtype-specific lipidome remodeling. While NE SCLC is ferroptosis resistant, it acquires selective addiction to the TRX anti-oxidant pathway. In experimental settings of non-NE/NE intratumoral heterogeneity, non-NE or NE populations are selectively depleted by ferroptosis or TRX pathway inhibition, respectively. Preventing subtype plasticity observed under single pathway targeting, combined treatment kills established non-NE and NE tumors in xenografts, genetically engineered mouse models of SCLC and patient-derived cells, and identifies a patient subset with drastically improved overall survival. These findings reveal cell death pathway mining as a means to identify rational combination therapies for SCLC.


Assuntos
Ferroptose , Tumores Neuroendócrinos/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Antioxidantes/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos Nus , Modelos Biológicos , Necroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeos/metabolismo , Prognóstico , Tiorredoxinas/metabolismo
6.
Oncogene ; 40(1): 1-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060857

RESUMO

EGFR mutations account for the majority of druggable targets in lung adenocarcinoma. Over the past decades the optimization of EGFR inhibitors revolutionized the treatment options for patients suffering from this disease. The pace of this development was largely dictated by the inevitable emergence of resistance mutations during drug treatment. As a result, a rapid understanding of the structural and molecular biology of the individual mutations is the key for the development of next-generation inhibitors. Currently, the field faces an unprecedented number of combinations of activating mutations with distinct resistance mutations in parallel to the approval of osimertinib as a first-line drug for EGFR-mutant lung cancer. In this review, we present a survey of the diverse landscape of EGFR resistance mechanisms with a focus on new insights into on-target EGFR kinase mutations. We discuss array of mutations, their structural effects on the EGFR kinase domain as well as the most promising strategies to overcome the individual resistance profiles found in lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Mutação , Adenocarcinoma de Pulmão/tratamento farmacológico , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
7.
J Med Chem ; 63(20): 11725-11755, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32931277

RESUMO

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Receptor ErbB-2/genética , Receptor ErbB-2/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31857889

RESUMO

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

9.
Nat Commun ; 10(1): 3485, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375684

RESUMO

MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.


Assuntos
Apoptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
10.
Nat Commun ; 9(1): 4655, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405134

RESUMO

The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas , Compostos de Anilina , Animais , Linhagem Celular Tumoral , Progressão da Doença , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Cinética , Camundongos , Camundongos Nus , Mutação/genética , Células NIH 3T3 , Piperazinas/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química
11.
Bioconjug Chem ; 29(8): 2671-2678, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29927244

RESUMO

The influence on the resistance formation of polymers attached to antibiotics has rarely been investigated. In this study, ciprofloxacin (CIP) was conjugated to poly(2-methyl-2-oxazoline)s with an ethylene diamine end group (Me-PMOx28-EDA) via two different spacers (CIP modified with α,α'-dichloro- p-xylene-xCIP, CIP modified with chloroacetyl chloride-eCIP). The antibacterial activity of the conjugates against a number of bacterial strains shows a great dependence on the nature of the spacer. The Me-PMOx39-EDA-eCIP, containing a potentially cleavable linker, does not exhibit a molecular weight dependence on antibacterial activity in contrast to Me-PMOx27-EDA-xCIP. The resistance formation of both conjugates against Staphylococcus aureus and Escherichia coli was investigated. Both conjugates showed the potential to significantly delay the formation of resistant bacteria compared to the unmodified CIP. Closer inspection of a possible resistance mechanism by genome sequencing of the topoisomerase IV region of resistant S. aureus revealed that this bacterium mutates at the same position when building up resistance to CIP and to Me-PMOx27-EDA-xCIP. However, the S. aureus cells that became resistant against the polymer conjugate are fully susceptible to CIP. Thus, conjugation of CIP with PMOx seems to alter the resistance mechanism.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Poliaminas/química , Poliaminas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana
12.
J Med Chem ; 60(18): 7725-7744, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28853575

RESUMO

Reversible epidermal growth factor receptor (EGFR) inhibitors prompt a beneficial clinical response in non-small cell lung cancer patients who harbor activating mutations in EGFR. However, resistance mutations, particularly the gatekeeper mutation T790M, limit this efficacy. Here, we describe a structure-guided development of a series of covalent and mutant-selective EGFR inhibitors that effectively target the T790M mutant. The pyrazolopyrimidine-based core differs structurally from that of aminopyrimidine-based third-generation EGFR inhibitors and therefore constitutes a new set of inhibitors that target this mechanism of drug resistance. These inhibitors exhibited strong inhibitory effects toward EGFR kinase activity and excellent inhibition of cell growth in the drug-resistant cell line H1975, without significantly affecting EGFR wild-type cell lines. Additionally, we present the in vitro ADME/DMPK parameters for a subset of the inhibitors as well as in vivo pharmacokinetics in mice for a candidate with promising activity profile.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Mutação Puntual , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia
13.
J Med Chem ; 60(13): 5613-5637, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28603991

RESUMO

Inhibition of the epidermal growth factor receptor represents one of the most promising strategies in the treatment of lung cancer. Acquired resistance compromises the clinical efficacy of EGFR inhibitors during long-term treatment. The recently discovered EGFR-C797S mutation causes resistance against third-generation EGFR inhibitors. Here we present a rational approach based on extending the inhibition profile of a p38 MAP kinase inhibitor toward mutant EGFR inhibition. We used a privileged scaffold with proven cellular potency as well as in vivo efficacy and low toxicity. Guided by molecular modeling, we synthesized and studied the structure-activity relationship of 40 compounds against clinically relevant EGFR mutants. We successfully improved the cellular EGFR inhibition down to the low nanomolar range with covalently binding inhibitors against a gefitinib resistant T790M mutant cell line. We identified additional noncovalent interactions, which allowed us to develop metabolically stable inhibitors with high activities against the osimertinib resistant L858R/T790M/C797S mutant.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Imidazóis/química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Mutação Puntual , Quinazolinas/farmacologia , Relação Estrutura-Atividade
14.
J Med Chem ; 60(6): 2361-2372, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28225269

RESUMO

The specific targeting of oncogenic mutant epidermal growth factor receptor (EGFR) is a breakthrough in targeted cancer therapy and marks a drastic change in the treatment of non-small cell lung cancer (NSCLC). The recurrent emergence of resistance to these targeted drugs requires the development of novel chemical entities that efficiently inhibit drug-resistant EGFR. Herein, we report the optimization process for a hit compound that has emerged from a phenotypic screen resulting in indazole-based compounds. These inhibitors are conformationally less flexible, target gatekeeper mutated drug-resistant EGFR-L858R/T790M, and covalently alkylate Cys797. Western blot analysis, as well as characterization of the binding kinetics and kinase selectivity profiling, substantiates our approach of targeting drug-resistant EGFR-L858R/T790M with inhibitors incorporating the indazole as hinge binder.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Indazóis , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Simulação de Acoplamento Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA