RESUMO
HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH). HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging. Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH. These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.
Assuntos
Encéfalo , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Masculino , Encéfalo/metabolismo , Encéfalo/virologia , Adulto , Pessoa de Meia-Idade , Feminino , Transcrição Gênica , Lobo Frontal/metabolismo , Lobo Frontal/virologiaRESUMO
Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.
RESUMO
HIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4+ T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance. Venetoclax, a pro-apoptotic inhibitor of Bcl-2, depletes total and intact HIV-1 DNA in CD4+ T cells from PLWH ex vivo. This venetoclax-sensitive population is enriched for cells with transcriptionally higher levels of pro-apoptotic BH3-only proteins. Furthermore, venetoclax delays viral rebound in a mouse model of persistent HIV-1 infection, and the combination of venetoclax with the Mcl-1 inhibitor S63845 achieves a longer delay in rebound compared with either intervention alone. Thus, selective inhibition of pro-survival proteins can induce death of HIV-1-infected cells that persist on ART, extending time to viral rebound.
Assuntos
Soropositividade para HIV , HIV-1 , Humanos , Animais , Camundongos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Modelos Animais de DoençasRESUMO
Quantification of intact proviruses is a critical measurement in HIV cure studies both in vitro and in vivo. The widely adopted 'intact proviral DNA assay' (IPDA), designed to discriminate and quantify genetically intact HIV proviruses based on detection of two HIV sequence-specific targets, was originally validated using Bio-Rad's droplet digital PCR technology (ddPCR). Despite its advantages, ddPCR is limited in multiplexing capability (two-channel) and is both labor- and time intensive. To overcome some of these limitations, we utilized a nanowell-based digital PCR platform (dPCR, QIAcuity from Qiagen) which is a fully automated system that partitions samples into nanowells rather than droplets. In this study we adapted the IPDA assay to the QIAcuity platform and assessed its performance relative to ddPCR. The dPCR could differentiate between intact, 5' defective and 3' defective proviruses and was sensitive to single HIV copy input. We found the intra-assay and inter-assay variability was within acceptable ranges (with coefficient of variation at or below 10%). When comparing the performance of the IPDA in ex vivo CD4+ T cells from people with HIV on antiretroviral therapy, there was a strong correlation in the quantification of intact (rs = 0.93; p < 0.001) and 3' defective proviruses (rs = 0.96; p < 0.001) with a significant but less strong correlation for 5' defective proviruses (rs = 0.7; p = 0.04). We demonstrate that the dPCR platform enables sensitive and accurate quantification of genetically intact and defective proviruses similar to the ddPCR system but with greater speed and efficiency. This flexible system can be further optimized in the future, to detect up to 5 targets, enabling a more precise detection of intact and potentially replication-competent proviruses.
RESUMO
Here, we provide the first regional analysis of intact and defective HIV reservoirs within the brain. Brain tissue from both viremic and virally suppressed people with HIV (PWH) harbored HIV pol DNA in all regions tested, with lower levels present in basal ganglia and cerebellum relative to frontal white matter. Intact proviruses were primarily found in the frontal white matter but also detected in other brain regions of PWH, demonstrating frontal white matter as a major brain reservoir of intact, potentially replication competent HIV DNA that persists despite antiretroviral therapy. ANN NEUROL 2023;94:798-802.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Linfócitos T CD4-Positivos , HIV-1/genética , Carga Viral , Infecções por HIV/tratamento farmacológico , EncéfaloRESUMO
In most people living with HIV (PLWH) on effective antiretroviral therapy (ART), cell-associated viral transcripts are readily detectable in CD4+ T cells despite the absence of viremia. Quantification of HIV RNA species provides insights into the transcriptional activity of proviruses that persist in cells and tissues throughout the body during ART ('HIV reservoir'). One such technique for HIV RNA quantitation, 'HIV transcription profiling', developed in the Yukl laboratory, measures a series of HIV RNA species using droplet digital PCR. To take advantage of advances in digital (d)PCR, we adapted the 'HIV transcription profiling' technique to Qiagen's dPCR platform (QIAcuity) and compared its performance to droplet digital (dd)PCR (Bio-Rad QX200 system). Using RNA standards, the two technologies were tested in parallel and assessed for multiple parameters including sensitivity, specificity, linearity, and intra- and inter-assay variability. The newly validated dPCR assays were then applied to samples from PLWH to determine HIV transcriptional activity relative to HIV reservoir size. We report that HIV transcriptional profiling was readily adapted to dPCR and assays performed similarly to ddPCR, with no differences in assay characteristics. We applied these assays in a cohort of 23 PLWH and found that HIV reservoir size, based on genetically intact proviral DNA, does not predict HIV transcriptional activity. In contrast, levels of total DNA correlated with levels of most HIV transcripts (initiated, proximally and distally elongated, unspliced, and completed, but not multiply spliced), suggesting that a considerable proportion of HIV transcripts likely originate from defective proviruses. These findings may have implications for measuring and assessing curative strategies and clinical trial outcomes.
Assuntos
Infecções por HIV , HIV-1 , Humanos , DNA Viral/genética , DNA Viral/análise , HIV-1/genética , Reação em Cadeia da Polimerase , Provírus/genética , Linfócitos T CD4-Positivos , RNA Viral/análise , Carga Viral/métodosRESUMO
OBJECTIVES: Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS: Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS: Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION: Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Assuntos
Infecções por HIV , Humanos , Anticorpos Amplamente Neutralizantes/uso terapêutico , Linfócitos T CD4-Positivos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Subpopulações de Linfócitos T , Antirretrovirais/uso terapêutico , Imunoglobulina G , Anticorpos Anti-HIV , Anticorpos NeutralizantesRESUMO
BACKGROUND: HIV can infect multiple cells in the liver including hepatocytes, Kupffer cells and infiltrating T cells, but whether HIV can persist in the liver in people with HIV (PWH) on suppressive antiretroviral therapy (ART) remains unknown. METHODS: In a prospective longitudinal cohort of PWH and hepatitis B virus (HBV) co-infection living in Bangkok, Thailand, we collected blood and liver biopsies from 18 participants prior to and following ART and quantified HIV and HBV persistence using quantitative (q)PCR and RNA/DNAscope. Antiretroviral (ARV) drug levels were quantified using mass spectroscopy. FINDINGS: In liver biopsies taken prior to ART, HIV DNA and HIV RNA were detected by qPCR in 53% (9/17) and 47% (8/17) of participants respectively. Following a median ART duration of 3.4 years, HIV DNA was detected in liver in 61% (11/18) of participants by either qPCR, DNAscope or both, but only at very low and non-quantifiable levels. Using immunohistochemistry, HIV DNA was observed in both hepatocytes and liver infiltrating CD4+ T cells on ART. HIV RNA was not detected in liver biopsies collected on ART, by either qPCR or RNAscope. All ARVs were clearly detected in liver tissue. INTERPRETATION: Persistence of HIV DNA in liver in PWH on ART represents an additional reservoir that warrants further investigation. FUNDING: National Health and Medical Research Council of Australia (Project Grant APP1101836, 1149990, and 1135851); This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.
Assuntos
Coinfecção , Infecções por HIV , Hepatite B , Humanos , Estudos Prospectivos , Tailândia , Hepatite B/complicações , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , DNA Viral/genética , HepatócitosRESUMO
Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1-CTLA4-) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency.
Assuntos
Infecções por HIV , Humanos , Linfócitos T CD4-Positivos , Antígeno CTLA-4/genética , Receptores Imunológicos , RNA , Linfócitos T , Receptor de Morte Celular Programada 1/metabolismoRESUMO
In people living with HIV (PLWH) on antiretroviral therapy (ART), virus persists in a latent form where there is minimal transcription or protein expression. Latently infected cells are a major barrier to curing HIV. Increasing HIV transcription and viral production in latently infected cells could facilitate immune recognition and reduce the pool of infected cells that persist on ART. Given that programmed cell death protein 1 (PD-1) expressing CD4+ T cells are preferentially infected with HIV in PLWH on ART, we aimed to determine whether administration of antibodies targeting PD-1 would reverse HIV latency in vivo. We therefore evaluated the impact of intravenous administration of pembrolizumab every 3 weeks on HIV latency in 32 PLWH and cancer on ART. After the first infusion of anti-PD-1, we observed a median 1.32-fold increase in unspliced HIV RNA and 1.61-fold increase in unspliced RNA:DNA ratio in sorted blood CD4+ T cells compared to baseline. We also observed a 1.65-fold increase in plasma HIV RNA. The frequency of CD4+ T cells with inducible virus evaluated using the tat/rev limiting dilution assay was higher after 6 cycles compared to baseline. Phylogenetic analyses of HIV env sequences in a participant who developed low concentrations of HIV viremia after 6 cycles of pembrolizumab did not demonstrate clonal expansion of HIV-infected cells. These data are consistent with anti-PD-1 being able to reverse HIV latency in vivo and support the rationale for combining anti-PD-1 with other interventions to reduce the HIV reservoir.
Assuntos
Infecções por HIV , HIV-1 , Neoplasias , Anticorpos Monoclonais Humanizados , Linfócitos T CD4-Positivos , Humanos , Neoplasias/metabolismo , Filogenia , Receptor de Morte Celular Programada 1/metabolismo , RNA , Latência ViralRESUMO
Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.
Assuntos
Citocinas/metabolismo , Francisella tularensis/imunologia , Imunidade Inata , Células T Invariantes Associadas à Mucosa/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Fígado/imunologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Fenótipo , RNA-Seq , Ribitol/análogos & derivados , Ribitol/imunologia , Análise de Célula Única , Baço/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Transcriptoma/genética , Uracila/análogos & derivados , Uracila/imunologia , Vacinas Atenuadas/imunologiaRESUMO
BACKGROUND: A research priority in finding a cure for HIV is to establish methods to accurately locate and quantify where and how HIV persists in people living with HIV (PLWH) receiving suppressive antiretroviral therapy (ART). Infusing copper-64 (64Cu) radiolabelled broadly neutralising antibodies targeting HIV envelope (Env) with CT scan and positron emission tomography (PET) identified HIV Env in tissues in SIV infected non-human primates . We aimed to determine if a similar approach was effective in people living with HIV (PLWH). METHODS: Unmodified 3BNC117 was compared with 3BNC117 bound to the chelator MeCOSar and 64Cu (64Cu-3BNC117) in vitro to assess binding and neutralization. In a clinical trial 64Cu-3BNC117 was infused into HIV uninfected (Group 1), HIV infected and viremic (viral load, VL >1000 c/mL; Group 2) and HIV infected aviremic (VL <20 c/mL; Group 3) participants using two dosing strategies: high protein (3mg/kg unlabeled 3BNC117 combined with <5mg 64Cu-3BNC117) and trace (<5mg 64Cu-3BNC117 only). All participants were screened for 3BNC117 sensitivity from virus obtained from viral outgrowth. Magnetic resonance imaging (MRI)/PET and pharmacokinetic assessments (ELISA for serum 3BNC117 concentrations and gamma counting for 64Cu) were performed 1, 24- and 48-hours post dosing. The trial (clincialtrials.gov NCT03063788) primary endpoint was comparison of PET standard uptake values (SUVs) in regions of interest (e.g lymph node groups and gastrointestinal tract). FINDINGS: Comparison of unmodified and modified 3BNC117 in vitro demonstrated no difference in HIV binding or neutralisation. 17 individuals were enrolled of which 12 were dosed including Group 1 (n=4, 2 high protein, 2 trace dose), Group 2 (n=6, 2 high protein, 4 trace) and Group 3 (n=2, trace only). HIV+ participants had a mean CD4 of 574 cells/microL and mean age 43 years. There were no drug related adverse effects and no differences in tissue uptake in regions of interest (e.g lymph node gut, pharynx) between the 3 groups. In the high protein dosing group, serum concentrations of 3BNC117 and gamma counts were highly correlated demonstrating that 64Cu-3BNC117 remained intact in vivo. INTERPRETATION: In PLWH on or off ART, the intervention of infusing 64Cu-3BNC117 and MRI/PET imaging over 48 hours, was unable to detect HIV-1 env expression in vivo. Future studies should investigate alternative radiolabels such as zirconium which have a longer half-life in vivo. FUNDING: Funded by the Alfred Foundation, The Australian Centre for HIV and Hepatitis Virology Research with additional support from the Division of AIDS, National Institute of Allergy and Infectious Disease, US National Institutes of Health (USAI126611). JHM and SRL are supported by the Australian National Health and Medical Research Council.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Infecções por HIV/diagnóstico por imagem , HIV-1/imunologia , Compostos Radiofarmacêuticos/administração & dosagem , Adulto , Antirretrovirais/uso terapêutico , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Estudos de Casos e Controles , Radioisótopos de Cobre/química , Feminino , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/metabolismo , Meia-Vida , Humanos , Marcação por Isótopo , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. RESULTS: A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. CONCLUSIONS: CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Subpopulações de Linfócitos T/imunologia , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Feminino , Variação Genética , Infecções por HIV/imunologia , HIV-1/classificação , HIV-1/genética , Humanos , Memória Imunológica , Estudos Longitudinais , Filogenia , Receptores de HIV/metabolismo , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
BACKGROUND: Identifying where human immunodeficiency virus (HIV) persists in people living with HIV and receiving antiretroviral therapy is critical to develop cure strategies. We assessed the relationship of HIV persistence to expression of chemokine receptors and their chemokines in blood (n = 48) and in rectal (n = 20) and lymph node (LN; n = 8) tissue collected from people living with HIV who were receiving suppressive antiretroviral therapy. METHODS: Cell-associated integrated HIV DNA, unspliced HIV RNA, and chemokine messenger RNA were quantified by quantitative polymerase chain reaction. Chemokine receptor expression on CD4+ T cells was determined using flow cytometry. RESULTS: Integrated HIV DNA levels in CD4+ T cells, CCR6+CXCR3+ memory CD4+ T-cell frequency, and CCL20 expression (ligand for CCR6) were highest in rectal tissue, where HIV-infected CCR6+ T cells accounted for nearly all infected cells (median, 89.7%). Conversely in LN tissue, CCR6+ T cells were infrequent, and there was a statistically significant association of cell-associated HIV DNA and RNA with CCL19, CCL21, and CXCL13 chemokines. CONCLUSIONS: HIV-infected CCR6+ CD4+ T cells accounted for the majority of infected cells in rectal tissue. The different relationships between HIV persistence and T-cell subsets and chemokines in rectal and LN tissue suggest that different tissue-specific strategies may be required to eliminate HIV persistence and that assessment of biomarkers for HIV persistence may not be generalizable between blood and other tissues.
Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , HIV/genética , Receptores CCR6/metabolismo , Reto/imunologia , Quimiocinas/metabolismo , DNA Viral/sangue , DNA Viral/genética , Feminino , Infecções por HIV/sangue , Infecções por HIV/virologia , Humanos , Linfonodos/imunologia , Linfonodos/virologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Viral/sangue , RNA Viral/genética , Reto/virologiaRESUMO
HIV can persist in people living with HIV (PLWH) on antiretroviral therapy (ART) in multiple CD4+ T cell subsets, including naive cells, central memory (CM) cells, transitional (TM) cells, and effector memory (EM) cells. Since these cells express different levels of the viral coreceptors CXCR4 and CCR5 on their surface, we sought to determine whether the HIV envelope protein (Env) was genotypically and phenotypically different between CD4+ T cell subsets isolated from PLWH on suppressive ART (n = 8). Single genome amplification for the HIV env gene was performed on genomic DNA extracts from different CD4+ T cell subsets. We detected CXCR4-using (X4) strains in five of the eight participants studied, and in these participants, the prevalence of X4 strains was higher in naive CD4+ T cells than in the memory subsets. Conversely, R5 strains were mostly found in the TM and EM populations. Identical sets of env sequences, consistent with clonal expansion of some infected cells, were more frequent in EM cells. These expanded identical sequences could also be detected in multiple CD4+ T cell subsets, suggesting that infected cells can undergo T cell differentiation. These identical sequences largely encoded intact and functional Env proteins. Our results are consistent with a model in which X4 HIV strains infect and potentially establish latency in naive and CM CD4+ T cells through direct infection, in addition to maintenance of the reservoir through differentiation and proliferation of infected cells.IMPORTANCE In people living with HIV (PLWH) on suppressive ART, latent HIV can be found in a diverse range of CD4+ T cells, including quiescent naive and central memory cells that are typically difficult to infect in vitro It is currently unclear how latency is established in these cells in vivo We show that in CD4+ T cells from PLWH on suppressive ART, the use of the coreceptor CXCR4 was prevalent among viruses amplified from naive and central memory CD4+ T cells. Furthermore, we found that expanded numbers of identical viral sequences were most common in the effector memory population, and these identical sequences were also found in multiple different CD4+ T cell subsets. Our results help to shed light on how a range of CD4+ T cell subsets come to harbor HIV DNA, which is one of the major barriers to eradicating the virus from PLWH.
Assuntos
Antirretrovirais/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV , HIV-1/fisiologia , Memória Imunológica/efeitos dos fármacos , Receptores CXCR4/imunologia , Latência Viral/efeitos dos fármacos , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HumanosRESUMO
BACKGROUND: Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. RESULTS: Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. CONCLUSIONS: Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat.
Assuntos
Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Substituição de Aminoácidos , Fármacos Anti-HIV/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mutação , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Splicing de RNA , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triazóis/farmacologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacosRESUMO
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular , Dinâmica Mitocondrial , Células-Tronco Neurais/metabolismo , Proteínas Priônicas/metabolismo , Superóxido Dismutase/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Fragmentos de Peptídeos/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética , Interferência de RNA , Superóxido Dismutase/genética , Superóxidos/metabolismoRESUMO
In vivo near-infrared (NIR) imaging of molecular processes at the preclinical stage promises to provide more valuable mechanistic information about pathological pathways involved in neurodegeneration. NIR imaging has the potential to improve in vivo therapeutic screening protocols by enabling noninvasive monitoring of presymptomatic responses to treatment. We have developed new NIR fluorescent contrast agents conjugated to markers of cell death, and using these agents we have identified molecular pathways associated with prion-induced neurodegeneration and determined the optimal window for meaningful therapeutic intervention in prion disease. This chapter provides a description of the synthesis and purification of our NIR cell Death (NIRD) contrast agent and the application of in vivo NIRD (iNIRD) imaging to a prion model of neurodegeneration.
Assuntos
Encéfalo/diagnóstico por imagem , Meios de Contraste/síntese química , Imagem Molecular/métodos , Doenças Priônicas/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Coloração e Rotulagem/métodos , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/farmacocinética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Inibidores de Caspase/química , Inibidores de Caspase/farmacocinética , Caspases/genética , Caspases/metabolismo , Morte Celular , Meios de Contraste/farmacocinética , Injeções Intravenosas , Camundongos , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Succinimidas/químicaRESUMO
Eight-hydroxyquinolines (8HQs) are a class of compounds that have been identified as potential therapeutics for a number of neurodegenerative diseases. Understanding the influence of structural modifications to the 8HQ scaffold on cellular behaviour will aid the identification of compounds that might be effective in treating dementias. In this study, we describe the action of 2-[(dimethylamino)methyl]-8-hydroxyquinoline (DMAMQ) on adult murine neural stem cells (NSCs) cultured in vitro. Treatment of NSCs with DMAMQ resulted in enhanced self-renewal and increased neurite outgrowth. Concurrent with the positive growth effects was an increase in intracellular reactive oxygen species, with the growth being inhibited by inactivation of the NADPH oxidase (Nox) enzyme family. Our results indicate that DMAMQ can stimulate neurogenesis via the Nox signalling pathway, which may provide therapeutic benefit in treating dementias of various types by replenishing neurones using the brain's own reserves. The narrow concentration range over which these effects were observed, however, suggests that there may exist only a small therapeutic window for neuro-regenerative applications.
Assuntos
Proliferação de Células/efeitos dos fármacos , Oxiquinolina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Citometria de Fluxo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , NADPH Oxidases/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oxiquinolina/químicaRESUMO
Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.