Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 21(3): 372-384, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37338317

RESUMO

Taiwan's oyster industry produces shell waste in abundant quantities every year. This study explored the feasibility of applying this resource as a simple and low-cost disinfectant to improve the microbial quality of harvested rainwater. Critical parameters affecting the disinfection efficacy of calcined oyster shell particles, i.e., heating temperature and duration, dosage, and contact time of the calcined shell material against Bacillus subtilis endospores in rainwater, were investigated. A central composite design of response surface methodology was employed to study the relative effects. As estimated from R2 coefficients, a quadratic model was identified to predict the response variable satisfactorily. Results indicated that the heating temperature, dosage, and contact time of the calcined material in the rainwater significantly influenced (p < 0.05) the sporicidal effect, consistent with the prior literature on calcined shells of similar nature. However, heating time had a relatively low influence on the sporicidal impact, suggesting that the rate of shell activation, i.e., conversion of the carbonate compound in the shell material to oxide, occurs rapidly at high calcination temperatures. In addition, the sterilization kinetics for heated oyster shell particles in aqueous media under stagnant storage conditions were investigated and found to be in good agreement with Hom's model.


Assuntos
Bacillus subtilis , Ostreidae , Animais , Bacillus subtilis/fisiologia , Temperatura Alta , Esporos Bacterianos , Antibacterianos/farmacologia
2.
Environ Sci Pollut Res Int ; 29(38): 58222-58230, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35366723

RESUMO

There is growing awareness that nature-based solutions (NBS) prevent negative effects and secure ecosystem services. However, the potential of NBS to provide intended benefits has not been rigorously assessed. Water, food, and energy (WFE) are essential for human well-being. This study highlights the importance of NBS in terms of water, food, and energy. A set of on-site NBS that includes permeable pavements, plant microbial fuel cells, bio-filtration basins, and rain gardens is used to determine the contribution of NBS to the environmental and economic development of urban environments. The results of this study show that NBSs benefit an urban environment in terms of water treatment, stormwater retention, food production and energy generation, carbon sequestration, pollination, sedimentation retention, and cultural services dimension. This research highlights an urgent need for the integration of water, food, and energy plans to ensure that NBSs contribute to the environment and for the conservation of ecosystem services.


Assuntos
Ecossistema , Purificação da Água , Desenvolvimento Econômico , Filtração , Humanos , Chuva
3.
Sci Total Environ ; 794: 148627, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217083

RESUMO

This study investigated the role of microorganisms on the correlation between temperature changes and disinfection by-product formation in natural waters. Climate changes have resulted in an increase in the global surface temperature. Studies have revealed that increases in temperature may change the composition of dissolved organic matter (DOM), which may contain major disinfection by-product (DBP) precursors. This change in the DOM composition may affect DBP formation after conventional water treatment processes. Understanding the role of microorganisms in DOM composition as well as DBP formation and speciation is critical for controlling DBP formation. In this study, laboratory stimulatory experiments were conducted on water samples from various sources, at various temperatures, and with various microbial concentrations. The results revealed a decreasing trend of dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) at high temperature incubations irrespective of microbial concentrates. This result may be attributed to the fact that microorganism activities or concentrations in water increase at higher temperatures, which may result in higher DOC consumption and lower DBP formation. Water samples spiked with bacteria concentrates exhibited higher THMFP or HAAFP reduction than did samples without bacteria concentrates. A higher biomass in water may contribute to a higher consumption of DOC and consequently lower DBP formation potentials, especially at high incubation temperatures.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Temperatura , Trialometanos/análise , Poluentes Químicos da Água/análise
4.
Environ Sci Process Impacts ; 22(1): 187-196, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31833499

RESUMO

Urban stormwater has recently been considered a potential water resource to augment urban water supplies; however, the existence of emerging contaminants limits urban stormwater utilization. This study aims to use woodchip bioreactors, which are natural and inexpensive, to remove emerging contaminants from artificial stormwater, with a focus on the contaminant removal processes in the woodchip bioreactor and on the effects of operational parameters on the system performance. Seven commonly detected emerging contaminants - acetaminophen (ACE), caffeine (CAFF), carbamazepine (CBZ), ibuprofen (IBU), sulfathiazole (SFZ), benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) - were studied. The results showed that the removal efficiency and removal processes are heavily dependent on the compound. ACE and CAFF have the highest removal efficiencies (≥80%), and sorption and biodegradation are both crucial for their removal. However, IBU exhibits very limited sorption and biodegradation and hence has the worst removal (≤15%). The removal efficiencies of the other compounds (SFZ, CBZ, BT and 5-MeBT) range from ∼30 to 60%, and sorption is likely the main removal process. The effects of several operational parameters, including woodchip type, operation time, season and flow rate, on the removal rate of emerging contaminants were also explored. The results of this study showed that the woodchip column system, which is capable of sorption and biodegradation, represents a promising treatment process for removing emerging contaminants from urban stormwater.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , Biodegradação Ambiental , Carbamazepina
5.
Artigo em Inglês | MEDLINE | ID: mdl-30477244

RESUMO

High cyanobacteria-derived dissolved organic carbon (DOC) in source water can cause drinking water quality to deteriorate, producing bad taste, odor, toxins, and possibly elevated levels of disinfection byproduct (DBP) precursors. Conventional water treatment processes do not effectively remove algal organic substances. In this study, rapid-sand-filtration effluent from a water treatment plant on Kinmen Island, where serious cyanobacterial blooms occurred, was used to evaluate the DOC- and DBP-removal efficiency of ozonation and/or biofiltration. To simulate a small-scale water distribution system following water treatment, 24 h simulated distribution system (SDS) tests were conducted. The following DBPs were analyzed: trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and trichloronitromethane (TCNM). Applying biological activated-carbon filtration (BAC) on its own achieved the greatest reduction in SDS-DBPs. Ozonation alone caused adverse effects by promoting THM, HAA, and TCNM formation. Ozonation and BAC filtration yielded better DOC removal (51%) than BAC filtration alone (41%). Considering the cost of ozonation, we suggest that when treating high cyanobacterial organic matter in water destined for a small-scale water distribution system, BAC biofiltration alone could be an efficient, economical option for reducing DBP precursors. If DOC removal needs to be improved, preceding ozonation could be incorporated.


Assuntos
Cianobactérias/metabolismo , Filtração , Ozônio , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Carvão Vegetal , Eutrofização , Eliminação de Resíduos Líquidos
6.
Environ Sci Technol ; 49(24): 14432-40, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26571080

RESUMO

In vitro bioassays have indicated that haloacetamides and haloacetaldehydes exhibit the highest cytotoxicity among DBP classes. Previous research has focused on their potential formation from the chlorination or chloramination of aliphatic compounds, particularly nonaromatic amino acids, and acetaldehyde. The present work found that acetaldehyde served as a relatively poor precursor for trichloroacetaldehyde and dichloroacetamide, generally the most prevalent of the haloacetaldehydes and haloacetamides, during chlorination or chlorination/chloramination. Using phenolic model compounds, particularly 4-hydroxybenzoic acid, as models for structures in humic substances, we found significantly higher formation of trichloroacetaldehyde and dichloroacetamide from prechlorination followed by chloramination. Evaluation of the stoichiometry of chlorine reactions with 4-hydroxybenzoic acid and several intermediates indicated that seven successive Cl[+1] transfers, faster with chlorination than chloramination, can form 2,3,5,5,6-pentachloro-6-hydroxy-cyclohexa-2-ene-1,4-dione via chlorophenol and chlorobenzoquinone intermediates. Formation of 2,3,5,5,6-pentachloro-6-hydroxy-cyclohexa-2-ene-1,4-dione may serve as a key branching point, with chloramines promoting the formation of dichloroacetamide and chlorination promoting the formation of trichloroacetaldehyde. The behavior of 4-hydroxybenzoic acid with respect to yields of dichloroacetamide and trichloroacetaldehyde during chlorination followed by chloramination was similar to the behavior observed for model humic acids and several surface waters, suggesting that phenolic structures in natural waters may serve as the predominant, and common pool of precursors for haloacetamides and haloacetaldehydes. Experiments with natural waters indicated that the branching point is reached over prechlorine exposures (100-500 mg-min/L) relevant to drinking water utilities using chlorine as a primary disinfectant and chloramines for maintenance of a distribution system residual.


Assuntos
Desinfetantes/química , Água Doce/química , Lignina/química , Fenóis/química , Acetamidas/química , Hidrato de Cloral/análogos & derivados , Hidrato de Cloral/química , Cloraminas/química , Cloro/química , Clorofenóis/química , Desinfecção/métodos , Água Potável/química , Halogenação , Substâncias Húmicas , Parabenos/química , Espectrofotometria Ultravioleta
7.
Environ Monit Assess ; 187(5): 256, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25877647

RESUMO

In this work, we investigated the emerging pollutants in Taiwanese groundwater for the first time and correlated their presence with possible contamination sources. Fifty target pharmaceuticals and perfluorinated chemicals in groundwater were mostly present at ng L(-1) concentrations, except for 17α-ethynylestradiol, sulfamethoxazole, and acetaminophen (maximums of 1822, 1820, and 1036 ng L(-1), respectively). Perfluorinated compounds were detected with the highest frequencies in groundwater at almost all of the sample sites, especially short-chained perfluorinated carboxylates, which were easily transferred to the groundwater. The results indicate that the compounds found to have high detection frequencies and concentrations in groundwater are similar to those found in other countries around the world. Most common pharmaceuticals that contain hydrophilic groups, such as sulfonamide antibiotics and caffeine, are easily transported through surface waters to groundwater. The results also indicated that the persistent natures of emerging contaminants with high detection frequencies in surface water and groundwater, such as perfluorooctanesulfonate (risk quotient >1), caffeine, and carbamazepine, should be further studied and evaluated.


Assuntos
Monitoramento Ambiental , Fluorocarbonos/análise , Água Subterrânea/química , Hormônios/análise , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos , Ácidos Carboxílicos , Água Doce/química , Taiwan , Abastecimento de Água
8.
J Hazard Mater ; 283: 218-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25279758

RESUMO

During the chloramination of natural waters, both chloramines and dissolved organic nitrogen (DON) can serve as nitrogen sources for the formation of trichloronitromethane (TCNM) and dichloroacetonitrile (DCAN). The present study investigated the formation kinetics and precursor characteristics of TCNM and DCAN. (15)N-Isotopic monochloramination of the organic fractions produced both (15)N- and (14)N-DCAN and TCNM. Nitrogenous disinfection byproduct (N-DBP) formation, in which the nitrogen precursor originated from DON ((14)N-DCAN and (14)N-TCNM), followed a second-order reaction kinetics (k=3.2×10(-5) to 9.4×10(-5)µM(-1)h(-1)). The formation of N-DBP where the nitrogen atoms originated from chloramines (e.g. (15)N-DCAN and (15)N-TCNM) correlated linearly with chloramine exposure. The discrepancy in formation kinetics results in that the (14)N-DCAN concentrations were two to ten times higher than (15)N-DCAN in the beginning of the reaction (<12h). Possible rate equations are proposed in this study. The results of a model compound study support the results of the chloramination of natural waters. In addition, 4-hydroxybenzaldehyde, an oxidative product commonly found during chlorination/chloramination of natural organic matters, gave a 10-fold greater yield of DCAN than that produced from tyrosine; 4-hydroxybenzaldehyde is thus an important precursor in DCAN formation by chloramine incorporation during the chloramination of natural waters.


Assuntos
Acetonitrilas/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Poluentes Químicos da Água/análise , Desinfecção , Cinética , Purificação da Água/métodos
9.
Water Res ; 47(3): 1308-16, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23286987

RESUMO

The direct incorporation of chloramines and dissolved organic nitrogen (DON) may provide the nitrogen for nitrogenous disinfection byproducts (N-DBPs). This study explores the contributions of natural DON and chloramine incorporation to the formation of N-DBPs during chloramination. This study also evaluates the relationship between N-DBPs and carbonaceous DBPs by investigating four sources of dissolved organic matter with different DON-to-dissolved organic carbon (DOC) ratios. During chloramination, dihaloacetonitrile (DXAN) formation is correlated with the summation of trihalomethanes (THMs) and dichloroacetic acids (DXAAs) yield in molar basis at pH > 6. This study tests the formation kinetics of THMs, DXAAs, and DXANs during chloramination, explores the changes in DBP formation potential before and after a sequence of ozonation and chloramination, and tracks the nitrogen source of dichloroacetonitrile. The results support the hypothesis that THMs, DXAAs, and DXANs mainly derive from similar precursors upon chloramination. In addition, the precursor of HANs was approximately 10% (on a molar basis) of that of THMs and HAAs combined. The N-nitrosodimethylamine (NDMA) formation potential is correlated with DON/DOC in hydrophilic and transphilic fractions. Isotope (15)N-labeled monochloramine coupled with LC-electrospray ionization-tandem mass spectrometry was used to explore the nitrogen source of NDMA formed in chloraminated organic fractions. The results indicate that the nitroso group of the formed NDMA originates mainly from chloramines.


Assuntos
Cloraminas/química , Nitrogênio/química , Compostos Orgânicos/química , Ácido Dicloroacético/química , Concentração de Íons de Hidrogênio , Purificação da Água
10.
Chemosphere ; 85(7): 1146-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21974919

RESUMO

It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development--a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Cl(threshold)) for biodegradation was estimated at 0.46-0.5mgL(-1). The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Cl(threshold) influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.


Assuntos
Acetatos/análise , Cloro/análise , Filtração , Dióxido de Silício/química , Purificação da Água/métodos , Acetatos/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Desinfecção , Temperatura
11.
J Hazard Mater ; 183(1-3): 242-50, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20696522

RESUMO

Sorption and combined sorption-biodegradation experiments were conducted in laboratory batch studies with 100 g soil/sediments and 500 mL water to investigate the fates in aqueous environments of acetaminophen, caffeine, propranolol, and acebutolol, four frequently used and often-detected pharmaceuticals. All four compounds have demonstrated significant potential for degradation and sorption in natural aqueous systems. For acetaminophen, biodegradation was found to be a primary mechanism for degradation, with a half-life (t(1/2)) for combined sorption-biodegradation of 2.1 days; in contrast, sorption alone was responsible only for a 30% loss of aqueous-phase acetaminophen after 15 days. For caffeine, both biodegradation and sorption were important (t(1/2) for combined sorption-biodegradation was 1.5 days). However, for propranolol and acebutolol, sorption was found to be the most significant removal mechanism and was not affected by biodegradation. Desorption experiments revealed that the sorption process was mostly irreversible. High values were found for K(d) for caffeine, propranolol, and acebutolol, ranging from 250 to 1900 L kg(-1), which explained their greater tendency for sorption onto sediments, compared to the more hydrophilic acetaminophen. Experimentally derived values for logK(oc) differed markedly from values calculated from correlation equations. This discrepancy was attributed to the fact that these equations are well suited for hydrophobic interactions but may fail to predict the sorption of polar and ionic compounds. These results suggest that mechanisms other than hydrophobic interactions played an important role in the sorption process.


Assuntos
Acebutolol/isolamento & purificação , Acetaminofen/isolamento & purificação , Cafeína/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Propranolol/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Acebutolol/metabolismo , Acetaminofen/metabolismo , Adsorção , Biodegradação Ambiental , Cafeína/metabolismo , Fármacos Cardiovasculares , Estimulantes do Sistema Nervoso Central , Técnicas de Laboratório Clínico , Propranolol/metabolismo , Fármacos do Sistema Sensorial , Poluentes Químicos da Água/metabolismo
12.
Water Res ; 43(4): 971-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19070347

RESUMO

The occurrences of trihalomethanes (THMs), haloacetic acids (HAAs) and heterotrophic bacteria were monitored in five small water systems over a nine-month period to investigate the association between HAA degradation and heterotrophic bacteria populations. The sampling sites were chosen to cover the entire distribution network for each system. An inverse association between heterotrophic bacteria and HAA concentrations was found at some locations where chlorine residuals were around or less than 0.3mgL(-1). At other sample locations, where chlorine residuals were higher (over 0.7mgL(-1)), no HAA reduction was observed. A high heterotrophic bacteria count accompanied with a low chlorine residual could be used as an indicator for HAA degradation in distribution systems.


Assuntos
Acetatos/análise , Bactérias/isolamento & purificação , Cloro/análise , Microbiologia da Água , Abastecimento de Água/normas , Desinfecção/métodos , Desinfecção/normas , Compostos Orgânicos/análise , Estações do Ano , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA