Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38790706

RESUMO

Our previous study investigated the major flavonoids and antioxidant potential of Asian water lily (Nymphaea lotus L., family Nymphaeaceae) stamens and perianth extracts. Quercetin-3-O-rhamnoside (Que-3-Rha) and kaempferol-3-O-galactoside (Kae-3-Gal) were reported as the two most prominent flavonoids found in these extracts. Many flavonoids have been reported on the skin anti-aging effect that are useful for cosmeceutical/phytopharmaceutical application. However, Que-3-Rha and Kae-3-Gal occurring in this medicinal plant have not yet been evaluated for their ability to inhibit skin-aging enzymes. Therefore, this study aimed (1) to assess the enzyme inhibitory activity of Que-3-Rha and Kae-3-Gal, and (2) to conduct molecular modeling of these compounds against critical enzymes involved in skin aging such as collagenase, elastase, and tyrosinase. In vitro enzymatic assays demonstrated that both of the two most prominent flavonoids exhibited moderate to good inhibitory activity toward these enzymes. These experimental findings were supported by molecular docking analysis, which indicated that Que-3-Rha and Kae-3-Gal showed superior binding affinity to the target enzymes compared to the positive controls. Additionally, computational predictions suggested favorable skin permeability and no severe toxicity for both compounds. The results from molecular dynamic (MD) simulation revealed that all the complexes remained stable during the 200 ns MD simulation. Structural analyses and binding free energy calculations also supported the inhibitory potential of these two flavonoids against skin-aging enzymes. In conclusion, this study provides valuable insights into the anti-aging potential of the two major flavonoids occurring in this medicinal plant, paving the way for further development of cosmeceutical/phytopharmaceutical products targeting skin aging.

2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068894

RESUMO

Nelumbo nucifera Gaertn., an aquatic medicinal plant (Nelumbonaceae family), has a history of use in traditional medicine across various regions. Our previous study demonstrated the skin anti-aging potential of its stamen ethanolic extract by effectively inhibiting collagenase and tyrosinase enzymes. While the major constituents of this extract are well documented, there is a lack of research on the individual compounds' abilities to inhibit skin aging enzymes. Therefore, this study aimed to evaluate the anti-aging potential of the primary flavonoids found in N. nucifera using both in silico and in vitro approaches. Our initial step involved molecular docking to identify compounds with the potential to inhibit collagenase, elastase, and tyrosinase. Among the seven flavonoids studied, kaempferol-3-O-robinobioside (Kae-3-Rob) emerged as the most promising candidate, exhibiting the highest docking scores for three skin aging-related enzymes. Subsequent enzyme-based inhibition assays confirmed that Kae-3-Rob displayed robust inhibitory activity against collagenase (58.24 ± 8.27%), elastase (26.29 ± 7.16%), and tyrosinase (69.84 ± 6.07%). Furthermore, we conducted extensive 200-ns molecular dynamics (MD) simulations, revealing the stability of the complexes formed between Kae-3-Rob and each enzyme along the MD simulation time. MM/PBSA-based binding free energy calculations indicated the considerably stronger binding affinity of Kae-3-Rob for collagenase and tyrosinase compared to elastase, which was related to the greater percentage of hydrogen bond occupations. These computational findings were consistent with the relatively high inhibitory activity of Kae-3-Rob against collagenase and tyrosinase observed in our in vitro experiment. In conclusion, the results obtained from this comprehensive study suggest that Kae-3-Rob, a key flavonoid from N. nucifera, holds significant potential as a source of bioactive compounds for anti-aging cosmeceutical and other phytopharmaceutical application.


Assuntos
Flavonoides , Nelumbo , Flavonoides/farmacologia , Flavonoides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Elastase Pancreática , Colagenases , Compostos Fitoquímicos/farmacologia
3.
Plants (Basel) ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079616

RESUMO

Stamen tea from Nelumbo nucifera Gaertn. (or the so-called sacred lotus) is widely consumed, and its flavonoids provide various human health benefits. The method used for tea preparation for consumption, namely the infusion time, may affect the levels of extractable flavonoids, ultimately affecting their biological effects. To date, there is no report on this critical information. Thus, this study aims to determine the kinetics of solid liquid extraction of flavonoid from sacred lotus stamen using the traditional method of preparing sacred lotus stamen tea. Phytochemical composition was also analyzed using high-performance liquid chromatography (HPLC). The antioxidant potential of stamen tea was also determined. The results indicated that the infusion time critically affects the concentrations of flavonoids and the antioxidant capacity of sacred lotus stamen tea, with a minimum infusion time of 5-12 min being required to release the different flavonoids from the tea. The extraction was modeled using second order kinetics. The rate of release was investigated by the glycosylation pattern, with flavonoid diglycosides, e.g., rutin and Kae-3-Rob, being released faster than flavonoid monoglycosides. The antioxidant activity was also highly correlated with flavonoid levels during infusion. Taken together, data obtained here underline that, among others, the infusion time should be considered for the experimental design of future epidemiological studies and/or clinical trials to reach the highest health benefits.

4.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080483

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional regulator that plays a crucial role in the hypoxic response of rapidly growing tumors. Overexpression of HIF-1α has been associated with breast cancer metastasis and poor clinical prognosis. Plumbagin, the main phytochemical from Plumbago indica, exerts anticancer effects via multiple mechanisms. However, its precise mechanisms on breast cancer cells under hypoxic conditions has never been investigated. This study aims to examine the anticancer effect of plumbagin on MCF-7 cell viability, transcriptional activity, and protein expression of HIF-1α under normoxia and hypoxia-mimicking conditions, as well as reveal the underlying signaling pathways. The results demonstrate that plumbagin decreased MCF-7 cell viability under normoxic conditions, and a greater extent of reduction was observed upon exposure to hypoxic conditions induced by cobalt chloride (CoCl2). Mechanistically, MCF-7 cells upregulated the expression of HIF-1α protein, mRNA, and the VEGF target gene under CoCl2-induced hypoxia, which were abolished by plumbagin treatment. In addition, inhibition of HIF-1α and its downstream targets did not affect the signaling transduction of the PI3K/Akt/mTOR pathway under hypoxic state. This study provides mechanistic insight into the anticancer activity of plumbagin in breast cancer cells under hypoxic conditions by abolishing HIF-1α at transcription and post-translational modifications.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Naftoquinonas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807274

RESUMO

Grape canes represent a valuable source of numerous polyphenols with antioxidant properties, whose compositions vary depending on the genotype and environmental factors. Antioxidant activities of pure molecules are often reported without considering possible interactions that may occur in complex polyphenol mixture. Using UPLC-MS-based metabolomics and unsupervised classification, we explored the polyphenol variations in grape cane extracts from a collection of European varieties. Antioxidant activities were assessed using ORAC, ABTS, DPPH, FRAP, CUPRAC and chelation assays. Pairwise correlations between polyphenols and antioxidant capacities were performed to identify molecules that contributed more to the antioxidant capacities within a complex mixture of polyphenols.


Assuntos
Polifenóis , Vitis , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Líquida , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Espectrometria de Massas em Tandem , Vitis/química
6.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684480

RESUMO

Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Diterpenos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR/metabolismo
7.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684520

RESUMO

Nymphaea lotus L. is a potential plant in the Nymphaeaceae family that is well-recognized as an economic and traditional medicinal plant in Thailand and other countries. Its pharmacological and medicinal effects have been confirmed. However, there is no study going deeper into the population level to examine the phytochemical variation and biological activity of each population that benefits phytopharmaceutical and medical applications using this plant as raw material. This study was intensely conducted to complete this important research gap to investigate the flavonoid profiles from its floral parts, the stamen and perianth, as well as the antioxidant potential of the 13 populations collected from every floristic region by (1) analyzing their flavonoid profiles, including the HPLC analysis, and (2) investigating the antioxidant capacity of these populations using three assays to observe different antioxidant mechanisms. The results indicated that the northeastern and northern regions are the most abundant floristic regions, and flavonoids are the main phytochemical class of both stamen and perianth extracts from N. lotus. The stamen offers higher flavonoids and richer antioxidant potential compared with the perianth. This finding is also the first completed report at the population level to describe the significant correlation between the phytochemical profiles in floral parts extracts and the main antioxidant activity, which is mediated by the electron transfer mechanism. The results from the Pearson correlation coefficients between several phytochemicals and different antioxidant assessments highlighted that the antioxidant capability of these extracts is the result of complex phytochemical combinations. The frontier knowledge from these current findings helps to open up doors for phytopharmaceutical industries to discover their preferred populations and floral parts that fit with their targeted products.


Assuntos
Antioxidantes , Nymphaea , Antioxidantes/análise , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tailândia
8.
Antioxidants (Basel) ; 11(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35624816

RESUMO

Plants of the genus Monochoria have long been utilized in food, cosmetics, and traditional herbal treatments. Thailand has the highest species diversity of this genus and a new member, Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum has been recently described. This plant is called "Siam Violet Pearl" as a common name or "Khimuk Si Muang Haeng Siam" as its vernacular name with the same meaning in the Thai language. Despite their importance, little research on Monochoria species has been conducted. This study, thus, provides the results to fill in this gap by: (i) determining flavonoid phytochemical profiles of 25 natural populations of M. angustifolia covering the whole floristic regions in Thailand, and (ii) determining antioxidant activity using various antioxidant assays to investigate probable mechanisms. The results revealed that M. angustifolia presents a higher flavonoid content than the outgroup, M. hastata. Our results also revealed that flavonoids might be used to investigate Monochoria evolutionary connections and for botanical authentication. The various antioxidant assays revealed that M. angustifolia extracts preferentially act through a hydrogen atom transfer antioxidant mechanism. Pearson correlation analysis indicated significant correlations, emphasizing that the antioxidant capacity is most probably due to the complex action of several phytochemicals rather than that of a single molecule. Together, these results showed that this new species provide an attractive alternative starting material with phytochemical variety and antioxidant potential for the phytopharmaceutical industry.

9.
Cells ; 11(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203251

RESUMO

Nelumbo nucifera is one of the most valuable medicinal species of the Nelumbonaceae family that has been consumed since the ancient historic period. Its stamen is an indispensable ingredient for many recipes of traditional medicines, and has been proved as a rich source of flavonoids that may provide an antiaging action for pharmaceutical or medicinal applications. However, there is no intense study on antiaging potential and molecular mechanisms. This present study was designed to fill in this important research gap by: (1) investigating the effects of sacred lotus stamen extract (LSE) on yeast lifespan extension; and (2) determining their effects on oxidative stress and metabolism to understand the potential antiaging action of its flavonoids. A validated ultrasound-assisted extraction method was also employed in this current work. The results confirmed that LSE is rich in flavonoids, and myricetin-3-O-glucose, quercetin-3-O-glucuronic acid, kaempferol-3-O-glucuronic acid, and isorhamnetin-3-O-glucose are the most abundant ones. In addition, LSE offers a high antioxidant capacity, as evidenced by different in vitro antioxidant assays. This present study also indicated that LSE delayed yeast (Saccharomyces cerevisiae, wild-type strain DBY746) chronological aging compared with untreated control yeast and a positive control (resveratrol) cells. Moreover, LSE acted on central metabolism, gene expressions (SIR2 and SOD2), and enzyme regulation (SIRT and SOD enzymatic activities). These findings are helpful to open the door for the pharmaceutical and medical sectors to employ this potential lotus raw material in their future pharmaceutical product development.


Assuntos
Nelumbo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Flavonoides/farmacologia , Glucose/metabolismo , Ácido Glucurônico , Nelumbo/genética , Nelumbo/metabolismo , Estresse Oxidativo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/metabolismo
10.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163946

RESUMO

Asian lotus has long been consumed as a food and herbal drug that provides several health benefits. The number of studies on its biological activity is significant, but research at the population level to investigate the variation in phytochemicals and biological activity of each population which is useful for a more efficient phytopharmaceutical application strategy remains needed. This present study provided the frontier results to fill-in this necessary gap to investigating the phytopharmaceutical potential of perianth and stamen, which represent an important part for Asian traditional medicines, from 18 natural populations throughout Thailand by (1) determining their phytochemical profiles, such as total contents of phenolic, flavonoid, and anthocyanin, and (2) determining the antioxidant activity of these natural populations using various antioxidant assays to examine different mechanisms. The result showed that Central is the most abundant floristic region. The stamen was higher in total phenolic and flavonoid contents, whereas perianth was higher in monomeric anthocyanin content. This study provided the first description of the significant correlation between phytochemical contents in perianth compared with stamen extracts, and indicated that flavonoids are the main phytochemical class. This analysis indicated that the stamen is a richer source of flavonoids than perianth, and provided the first report to quantify different flavonoids accumulated in stamen and perianth extracts under their native glycosidic forms at the population level. Various antioxidant assays revealed that major flavonoids from N. nucifera prefer the hydrogen atom transfer mechanism when quenching free radicals. The significant correlations between various phytochemical classes and the different antioxidant tests were noted by Pearson correlation coefficients and emphasized that the antioxidant capability of an extract is generally the result of complex phytochemical combinations as opposed to a single molecule. These current findings offer the alternative starting materials to assess the phytochemical diversity and antioxidant potential of N. nucifera for phytopharmaceutical sectors.


Assuntos
Antioxidantes/farmacologia , Nelumbo/química , Compostos Fitoquímicos/classificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Tailândia
11.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164366

RESUMO

Nelumbo nucifera Gaertn., or the so-called sacred lotus, is a useful aquatic plant in the Nelumbonaceae family that has long been used to prepare teas, traditional medicines as well as foods. Many studies reported on the phytochemicals and biological activities of its leaves and seeds. However, to date, only few studies were conducted on its stamen, which is the most important ingredient for herbal medicines, teas and other phytopharmaceutical products. Thus, this present study focuses on the following: (1) the application of high-performance liquid chromatography with photodiode array detection for a validated separation and quantification of flavonoids from stamen; (2) the Nelumbo nucifera stamen's in vitro and in cellulo antioxidant activities; as well as (3) its potential regarding the inhibition of skin aging enzymes for cosmetic applications. The optimal separation of the main flavonoids from the stamen ethanolic extract was effectively achieved using a core-shell column. The results indicated that stamen ethanolic extract has higher concentration of in vitro and in cellulo antioxidant flavonoids than other floral components. Stamen ethanolic extract showed the highest protective effect against reactive oxygen/nitrogen species formation, as confirmed by cellular antioxidant assay using a yeast model. The evaluation of potential skin anti-aging action showed that the stamen extract has higher potential to inhibit tyrosinase and collagenase compared with its whole flower. These current findings are the first report to suggest the possibility to employ N. nucifera stamen ethanolic extract as a tyrosinase and collagenase inhibitor in cosmetic applications, as well as the utility of the current separation method.


Assuntos
Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/farmacologia , Nelumbo/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Flavonoides/análise , Flavonoides/isolamento & purificação , Flores/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química
12.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946637

RESUMO

Pigeon pea is an important pea species in the Fabaceae family that has long been used for food, cosmetic, and other phytopharmaceutical applications. Its seed is reported as a rich source of antioxidants and anti-inflammatory flavonoids, especially isoflavones, i.e., cajanin, cajanol, daidzein, and genistein. In today's era of green chemistry and green cosmetic development, the development and optimization of extraction techniques is increasing employed by the industrial sectors to provide environmentally friendly products for their customers. Surprisingly, there is no research report on improving the extraction of these isoflavonoids from pigeon pea seeds. In this present study, ultrasound-assisted extraction (USAE) methodology, which is a green extraction that provides a shorter extraction time and consumes less solvent, was optimized and compared with the conventional methods. The multivariate strategy, the Behnken-Box design (BBD) combined with response surface methodology, was employed to determine the best extraction conditions for this USAE utilizing ethanol as green solvent. Not only in vitro but also cellular antioxidant activities were evaluated using different assays and approaches. The results indicated that USAE provided a substantial gain of ca 70% in the (iso)flavonoids extracted and the biological antioxidant activities were preserved, compared to the conventional method. The best extraction conditions were 39.19 min with a frequency of 29.96 kHz and 63.81% (v/v) aqueous ethanol. Both the antioxidant and anti-aging potentials of the extract were obtained under optimal USAE at a cellular level using yeast as a model, resulting in lower levels of malondialdehyde. These results demonstrated that the extract can act as an effective activator of the cell longevity protein (SIR2/SIRT1) and cell membrane protector against oxidative stress. This finding supports the potential of pigeon pea seeds and USAE methodology to gain potential antioxidant and anti-aging (iso)flavonoids-rich sources for the cosmetic and phytopharmaceutical sectors.


Assuntos
Antioxidantes , Cajanus/química , Flavonoides , Extratos Vegetais/química , Sementes/química , Ondas Ultrassônicas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
Foods ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34945669

RESUMO

Fabaceae is the third largest family containing great variation among populations. However, previous studies mainly focus on single species, and phytochemicals at population level have never been reported. This work aims to complete this knowledge with 50 populations from throughout Thailand by (1) determining total phenolic (TPC), flavonoid (TFC), and anthocyanin (TAC) contents; and (2) investigating in vitro and cellular antioxidant potentials. Phytochemicals of 50 populations from different localities are differed, illustrating high heterogeneity occurring in polyphenols accumulations. Vigna unguiculata subsp. sesquipedalis populations showed low variability in TPC ranging from 628.3 to 717.3 mg/100 g DW gallic acid equivalent, whereas the high variability found in TFC and TAC range from 786.9 to 1536.1 mg/100 g DW quercetin equivalent, and 13.4 to 41.6 mg/100 g DW cyanidin equivalent. Red cultivar population #16 had the greatest TAC, but surprisingly the cream cultivars were relatively high in anthocyanins. HPLC quantification of genistein and daidzein showed great variations among populations. In vitro antioxidant results indicated that antioxidant capacity mediated by electron transfer. Cellular antioxidants ranged from 59.7% to 87.9% of ROS/RNS in yeast model. This study investigated at the population level contributing to better and frontier knowledge for nutraceutical/phytopharmaceutical sectors to seek potential raw plant material.

14.
AMB Express ; 11(1): 137, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661766

RESUMO

Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.

15.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361665

RESUMO

In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Butileno Glicóis/análise , Cotilédone/química , Linho/química , Furanos/análise , Hipocótilo/química , Lignanas/análise , Extratos Vegetais/análise , Biomassa , Cromatografia Líquida de Alta Pressão/métodos , Cotilédone/metabolismo , Meios de Cultura/química , Técnicas de Cultura/métodos , Linho/metabolismo , Hipocótilo/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Fenóis/análise , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Tiadiazóis/farmacologia
16.
Environ Sci Pollut Res Int ; 28(38): 53728-53745, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34036493

RESUMO

Soil pollution is a worldwide issue and has a strong impact on ecosystems. Metal(loid)s have toxic effects on plants and affect various plant life traits. That is why metal(loid) polluted soils need to be remediated. As a remediation solution, phytoremediation, which uses plants to reduce the toxicity and risk of polluted soils, has been proposed. Moreover, flax (Linum usitatissimum L.) has been suggested as a potential phytoremediation plant, due to its antioxidant systems, which can lower the production of reactive oxygen species and can also chelate metal(loid)s. However, the high metal(loid) toxicity associated with the low fertility of the polluted soils render vegetation difficult to establish. Therefore, amendments, such as biochar, need to be applied to improve soil conditions and immobilize metal(loid)s. Here, we analyzed the growth parameters and oxidative stress biomarkers (ROS production, membrane lipid peroxidation, protein carbonylation and 8-oxoGuanine formation) of five different flax cultivars when grown on a real contaminated soil condition, and in the presence of a biochar amendment. Significant correlations were observed between plant growth, tolerance to oxidative stress, and reprogramming of phytochemical accumulation. A clear genotype-dependent response to metal(loid) stress was observed. It was demonstrated that some phenylpropanoids such as benzoic acid, caffeic acid, lariciresinol, and kaempferol played a key role in the tolerance to the metal(loid)-induced oxidative stress. According to these results, it appeared that some flax genotypes, i.e., Angora and Baikal, could be well adapted for the phytoremediation of metal(loid) polluted soils as a consequence of their adaptation to oxidative stress.


Assuntos
Linho , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Ecossistema , Solo , Poluentes do Solo/análise
17.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546424

RESUMO

Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 µM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts.


Assuntos
Anti-Inflamatórios , Antioxidantes , Quitosana , Lignanas , Células Vegetais/metabolismo , Silybum marianum/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Quitosana/química , Quitosana/metabolismo , Quitosana/farmacologia , Humanos , Lignanas/biossíntese , Lignanas/química , Lignanas/farmacologia , Silybum marianum/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ovinos
18.
Plants (Basel) ; 11(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35009070

RESUMO

The edible beans in Fabaceae have been used for foods and medicines since the ancient time, and being used more and more. It is also appeared as a major ingredient in dairy cooking menu in many regions including Thailand, a rich biodiversity country. Many studies reported on health benefits of their flavonoids, but there is no report on the effect of cooking on phytochemical profile and pharmacological potentials. Thus, this present study aims to complete this knowledge, with the 10 most consumed Fabaceae beans in Thailand, by determining the impact of traditional cooking and gastrointestinal digestion on their phytochemicals, their antioxidant and anti-diabetic activities using different in vitro and in cellulo yeast models. The results showed that Vigna unguiculata subsp. sesquipedalis were the richest source of phytochemicals, whereas the population of V. mungo, Phaseolus vulgaris, V. angularis, and V. unguiculata subsp. sesquipedalis were richest in monomeric anthocyanin contents (MAC). Furthermore, the results clearly demonstrated the impact of the plant matrix effect on the preservation of a specific class of phytochemicals. In particular, after cooking and in vitro digestion, total flavonoid contents (TFC) in Glycine max extract was higher than in the uncooked sample. This study is the first report on the influence of cooking and in vitro gastrointestinal digestion on the inhibition capacity toward advanced glycation end products (AGEs). All samples showed a significant capacity to stimulate glucose uptake in yeast model, and V. angularis showed the highest capacity. Interestingly, the increase in glucose uptake after in vitro digestion was higher than in uncooked samples for both P. vulgaris and G. max samples. The current study is the first attempt to investigate at the effects of both processes not only on the natural bioactive compounds but also on antioxidant and anti-diabetic activities of Thailand's 10 most consumed beans that can be applied for agro-industrial and phytopharmaceutical sectors.

19.
Front Plant Sci ; 11: 508658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072140

RESUMO

Over the last few decades, methods relating to plant tissue culture have become prevalent within the cosmetic industry. Forecasts predict the cosmetic industry to grow to an annual turnover of around a few hundred billion US dollars. Here we focused on Linum usitatissimum L., a plant that is well-known for its potent cosmetic properties. Following the a) establishment of cell cultures from three distinct initial explant origins (root, hypocotyl, and cotyledon) and b) selection of optimal hormonal concentrations, two in vitro systems (callus vs cell suspensions) were subjected to different light conditions. Phytochemical analysis by UPLC-HRMS not only confirmed high (neo)lignan accumulation capacity of this species with high concentrations of seven newly described (neo)lignans. Evaluation over 30 days revealed strong variations between the two different in vitro systems cultivated under light or dark, in terms of their growth kinetics and phytochemical composition. Additionally, antioxidant (i.e. four different in vitro assays based on hydrogen-atom transfer or electron transfer mechanism) and anti-aging (i.e. four in vitro inhibition potential of the skin remodeling enzymes: elastase, hyaluronidase, collagenase and tyrosinase) properties were evaluated for the two different in vitro systems cultivated under light or dark. A prominent hydrogen-atom transfer antioxidant mechanism was illustrated by the DPPH and ABTS assays. Potent tyrosinase and elastase inhibitory activities were also observed, which was strongly influenced by the in vitro system and light conditions. Statistical treatments of the data showed relationship of some (neo)lignans with these biological activities. These results confirmed the accumulation of flax (neo)lignans in different in vitro systems that were subjected to distinct light conditions. Furthermore, we showed the importance of optimizing these parameters for specific applications within the cosmetic industry.

20.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096885

RESUMO

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


Assuntos
Antioxidantes/metabolismo , Ocimum basilicum/química , Antioxidantes/química , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Ocimum basilicum/metabolismo , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA