Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Cardiol ; 415: 132415, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127146

RESUMO

BACKGROUND: The role of ECG in ruling out myocardial complications on cardiac magnetic resonance (CMR) is unclear. We examined the clinical utility of ECG in screening for cardiac abnormalities on CMR among post-hospitalised COVID-19 patients. METHODS: Post-hospitalised patients (n = 212) and age, sex and comorbidity-matched controls (n = 38) underwent CMR and 12­lead ECG in a prospective multicenter follow-up study. Participants were screened for routinely reported ECG abnormalities, including arrhythmia, conduction and R wave abnormalities and ST-T changes (excluding repolarisation intervals). Quantitative repolarisation analyses included corrected QT (QTc), corrected QT dispersion (QTc disp), corrected JT (JTc) and corrected T peak-end (cTPe) intervals. RESULTS: At a median of 5.6 months, patients had a higher burden of ECG abnormalities (72.2% vs controls 42.1%, p = 0.001) and lower LVEF but a comparable cumulative burden of CMR abnormalities than controls. Patients with CMR abnormalities had more ECG abnormalities and longer repolarisation intervals than those with normal CMR and controls (82% vs 69% vs 42%, p < 0.001). Routinely reported ECG abnormalities had poor discriminative ability (area-under-the-receiver-operating curve: AUROC) for abnormal CMR, AUROC 0.56 (95% CI 0.47-0.65), p = 0.185; worse among female than male patients. Adding JTc and QTc disp improved the AUROC to 0.64 (95% CI 0.55-0.74), p = 0.002, the sensitivity of the ECG increased from 81.6% to 98.0%, negative predictive value from 84.7% to 96.3%, negative likelihood ratio from 0.60 to 0.13, and reduced sex-dependence variabilities of ECG diagnostic parameters. CONCLUSION: Post-hospitalised COVID-19 patients have more ECG abnormalities than controls. Normal ECGs, including normal repolarisation intervals, reliably exclude CMR abnormalities in male and female patients.

2.
Magn Reson Med ; 91(4): 1598-1607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156827

RESUMO

PURPOSE: To show that B 0 $$ {\mathrm{B}}_0 $$ variations through slice and slice profile effects are two major confounders affecting 2D dual angle B 1 + $$ {\mathrm{B}}_1^{+} $$ maps using gradient-echo signals and thus need to be corrected to obtain accurate B 1 + $$ {\mathrm{B}}_1^{+} $$ maps. METHODS: The 2D gradient-echo transverse complex signal was Bloch-simulated and integrated across the slice dimension including nonlinear variations in B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities through slice. A nonlinear least squares fit was used to find the B 1 + $$ {\mathrm{B}}_1^{+} $$ factor corresponding to the best match between the two gradient-echo signals experimental ratio and the Bloch-simulated ratio. The correction was validated in phantom and in vivo at 3T. RESULTS: For our RF excitation pulse, the error in the B 1 + $$ {\mathrm{B}}_1^{+} $$ factor scales by approximately 3.8% for every 10 Hz/cm variation in B 0 $$ {\mathrm{B}}_0 $$ along the slice direction. Higher accuracy phantom B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were obtained after applying the proposed correction; the root mean square B 1 + $$ {\mathrm{B}}_1^{+} $$ error relative to the gold standard B 1 + $$ {\mathrm{B}}_1^{+} $$ decreased from 6.4% to 2.6%. In vivo whole-liver T 1 $$ {\mathrm{T}}_1 $$ maps using the corrected B 1 + $$ {\mathrm{B}}_1^{+} $$ map registered a significant decrease in T 1 $$ {\mathrm{T}}_1 $$ gradient through slice. CONCLUSION: B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities varying through slice were seen to have an impact on the accuracy of 2D double angle B 1 + $$ {\mathrm{B}}_1^{+} $$ maps using gradient-echo sequences. Consideration of this confounder is crucial for research relying on accurate knowledge of the true excitation flip angles, as is the case of T 1 $$ {\mathrm{T}}_1 $$ mapping using a spoiled gradient recalled echo sequence.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Análise dos Mínimos Quadrados , Frequência Cardíaca
3.
Contemp Clin Trials ; 134: 107352, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802221

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos de Coortes , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Imageamento por Ressonância Magnética/métodos , Biomarcadores
4.
Magn Reson Med ; 90(3): 950-962, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125661

RESUMO

PURPOSE: The spoiled gradient recalled echo (SPGR) sequence with variable flip angles (FAs) enables whole liver T 1 $$ {T}_1 $$ mapping at high spatial resolutions but is strongly affected by B 1 + $$ {B}_1^{+} $$ inhomogeneities. The aim of this work was to study how the precision of acquired T 1 $$ {T}_1 $$ maps is affected by the T 1 $$ {T}_1 $$ and B 1 + $$ {B}_1^{+} $$ ranges observed in the liver at 3T, as well as how noise propagates from the acquired signals into the resulting T 1 $$ {T}_1 $$ map. THEORY: The T 1 $$ {T}_1 $$ variance was estimated through the Fisher information matrix with a total noise variance including, for the first time, the B 1 + $$ {B}_1^{+} $$ map noise as well as contributions from the SPGR noise. METHODS: Simulations were used to find the optimal FAs for both the B 1 + $$ {B}_1^{+} $$ mapping and T 1 $$ {T}_1 $$ mapping. The simulations results were validated in 10 volunteers. RESULTS: Four optimized SPGR FAs of 2°, 2°, 15°, and 15° (TR = 4.1 ms) and B 1 + $$ {B}_1^{+} $$ map FAs of 65° and 130° achieved a T 1 $$ {T}_1 $$ coefficient of variation of 6.2 ± 1.7% across 10 volunteers and validated our theoretical model. Four optimal FAs outperformed five uniformly spaced FAs, saving the patient one breath-hold. For the liver B 1 + $$ {B}_1^{+} $$ and T 1 $$ {T}_1 $$ parameter space at 3T, a higher return in T 1 $$ {T}_1 $$ precision was obtained by investing FAs in the SPGR acquisition rather than in the B 1 + $$ {B}_1^{+} $$ map. CONCLUSION: A novel framework was developed and validated to calculate the SPGR T 1 $$ {T}_1 $$ variance. This framework efficiently identifies optimal FA values and determines the total number of SPGR and B 1 + $$ {B}_1^{+} $$ measurements needed to achieve a desired T 1 $$ {T}_1 $$ precision.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem
5.
Front Cardiovasc Med ; 10: 1097974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873410

RESUMO

Background: Patients with a history of COVID-19 infection are reported to have cardiac abnormalities on cardiovascular magnetic resonance (CMR) during convalescence. However, it is unclear whether these abnormalities were present during the acute COVID-19 illness and how they may evolve over time. Methods: We prospectively recruited unvaccinated patients hospitalized with acute COVID-19 (n = 23), and compared them with matched outpatient controls without COVID-19 (n = 19) between May 2020 and May 2021. Only those without a past history of cardiac disease were recruited. We performed in-hospital CMR at a median of 3 days (IQR 1-7 days) after admission, and assessed cardiac function, edema and necrosis/fibrosis, using left and right ventricular ejection fraction (LVEF, RVEF), T1-mapping, T2 signal intensity ratio (T2SI), late gadolinium enhancement (LGE) and extracellular volume (ECV). Acute COVID-19 patients were invited for follow-up CMR and blood tests at 6 months. Results: The two cohorts were well matched in baseline clinical characteristics. Both had normal LVEF (62 ± 7 vs. 65 ± 6%), RVEF (60 ± 6 vs. 58 ± 6%), ECV (31 ± 3 vs. 31 ± 4%), and similar frequency of LGE abnormalities (16 vs. 14%; all p > 0.05). However, measures of acute myocardial edema (T1 and T2SI) were significantly higher in patients with acute COVID-19 when compared to controls (T1 = 1,217 ± 41 ms vs. 1,183 ± 22 ms; p = 0.002; T2SI = 1.48 ± 0.36 vs. 1.13 ± 0.09; p < 0.001). All COVID-19 patients who returned for follow up (n = 12) at 6 months had normal biventricular function, T1 and T2SI. Conclusion: Unvaccinated patients hospitalized for acute COVID-19 demonstrated CMR imaging evidence of acute myocardial edema, which normalized at 6 months, while biventricular function and scar burden were similar when compared to controls. Acute COVID-19 appears to induce acute myocardial edema in some patients, which resolves in convalescence, without significant impact on biventricular structure and function in the acute and short-term. Further studies with larger numbers are needed to confirm these findings.

7.
JACC Cardiovasc Imaging ; 16(1): 46-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599569

RESUMO

BACKGROUND: Acute ST-segment elevation myocardial infarction (STEMI) has effects on the myocardium beyond the immediate infarcted territory. However, pathophysiologic changes in the noninfarcted myocardium and their prognostic implications remain unclear. OBJECTIVES: The purpose of this study was to evaluate the long-term prognostic value of acute changes in both infarcted and noninfarcted myocardium post-STEMI. METHODS: Patients with acute STEMI undergoing primary percutaneous coronary intervention underwent evaluation with blood biomarkers and cardiac magnetic resonance (CMR) at 2 days and 6 months, with long-term follow-up for major adverse cardiac events (MACE). A comprehensive CMR protocol included cine, T2-weighted, T2∗, T1-mapping, and late gadolinium enhancement (LGE) imaging. Areas without LGE were defined as noninfarcted myocardium. MACE was a composite of cardiac death, sustained ventricular arrhythmia, and new-onset heart failure. RESULTS: Twenty-two of 219 patients (10%) experienced an MACE at a median of 4 years (IQR: 2.5-6.0 years); 152 patients returned for the 6-month visit. High T1 (>1250 ms) in the noninfarcted myocardium was associated with lower left ventricular ejection fraction (LVEF) (51% ± 8% vs 55% ± 9%; P = 0.002) and higher NT-pro-BNP levels (290 pg/L [IQR: 103-523 pg/L] vs 170 pg/L [IQR: 61-312 pg/L]; P = 0.008) at 6 months and a 2.5-fold (IQR: 1.03-6.20) increased risk of MACE (2.53 [IQR: 1.03-6.22]), compared with patients with normal T1 in the noninfarcted myocardium (P = 0.042). A lower T1 (<1,300 ms) in the infarcted myocardium was associated with increased MACE (3.11 [IQR: 1.19-8.13]; P = 0.020). Both noninfarct and infarct T1 were independent predictors of MACE (both P = 0.001) and significantly improved risk prediction beyond LVEF, infarct size, and microvascular obstruction (C-statistic: 0.67 ± 0.07 vs 0.76 ± 0.06, net-reclassification index: 40% [IQR: 12%-64%]; P = 0.007). CONCLUSIONS: The acute responses post-STEMI in both infarcted and noninfarcted myocardium are independent incremental predictors of long-term MACE. These insights may provide new opportunities for treatment and risk stratification in STEMI.


Assuntos
Infarto Miocárdico de Parede Anterior , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Volume Sistólico , Função Ventricular Esquerda , Imagem Cinética por Ressonância Magnética/métodos , Meios de Contraste , Valor Preditivo dos Testes , Gadolínio , Miocárdio/patologia , Prognóstico , Infarto Miocárdico de Parede Anterior/complicações , Intervenção Coronária Percutânea/efeitos adversos
8.
BMJ Open ; 12(2): e051180, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197335

RESUMO

INTRODUCTION: New-onset hypertension affects approximately 10% of pregnancies and is associated with a significant increase in risk of cardiovascular disease in later life, with blood pressure measured 6 weeks postpartum predictive of blood pressure 5-10 years later. A pilot trial has demonstrated that improved blood pressure control, achevied via self-management during the puerperium, was associated with lower blood pressure 3-4 years postpartum. Physician Optimised Post-partum Hypertension Treatment (POP-HT) will formally evaluate whether improved blood pressure control in the puerperium results in lower blood pressure at 6 months post partum, and improvements in cardiovascular and cerebrovascular phenotypes. METHODS AND ANALYSIS: POP-HT is an open-label, parallel arm, randomised controlled trial involving 200 women aged 18 years or over, with a diagnosis of pre-eclampsia or gestational hypertension, and requiring antihypertensive medication at discharge. Women are recruited by open recruitment and direct invitation around time of delivery and randomised 1:1 to, either an intervention comprising physician-optimised self-management of postpartum blood pressure or, usual care. Women in the intervention group upload blood pressure readings to a 'smartphone' app that provides algorithm-driven individualised medication-titration. Medication changes are approved by physicians, who review blood pressure readings remotely. Women in the control arm follow assessment and medication adjustment by their usual healthcare team. The primary outcome is 24-hour average ambulatory diastolic blood pressure at 6-9 months post partum. Secondary outcomes include: additional blood pressure parameters at baseline, week 1 and week 6; multimodal cardiovascular assessments (CMR and echocardiography); parameters derived from multiorgan MRI including brain and kidneys; peripheral macrovascular and microvascular measures; angiogenic profile measures taken from blood samples and levels of endothelial circulating and cellular biomarkers; and objective physical activity monitoring and exercise assessment. An additional 20 women will be recruited after a normotensive pregnancy as a comparator group for endothelial cellular biomarkers. ETHICS AND DISSEMINATION: IRAS PROJECT ID 273353. This trial has received a favourable opinion from the London-Surrey Research Ethics Committee and HRA (REC Reference 19/LO/1901). The investigator will ensure that this trial is conducted in accordance with the principles of the Declaration of Helsinki and follow good clinical practice guidelines. The investigators will be involved in reviewing drafts of the manuscripts, abstracts, press releases and any other publications arising from the study. Authors will acknowledge that the study was funded by the British Heart Foundation Clinical Research Training Fellowship (BHF Grant number FS/19/7/34148). Authorship will be determined in accordance with the ICMJE guidelines and other contributors will be acknowledged. TRIAL REGISTRATION NUMBER: NCT04273854.


Assuntos
Hipertensão , Médicos , Autogestão , Pressão Sanguínea , Feminino , Humanos , Hipertensão/tratamento farmacológico , Período Pós-Parto , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
9.
NMR Biomed ; 35(6): e4685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967060

RESUMO

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Assuntos
Imagem de Tensor de Difusão , Coração , Anisotropia , Imagem de Tensor de Difusão/métodos , Coração/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
10.
Front Neurol ; 12: 753284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777224

RESUMO

SARS-CoV-2 infection has been shown to damage multiple organs, including the brain. Multiorgan MRI can provide further insight on the repercussions of COVID-19 on organ health but requires a balance between richness and quality of data acquisition and total scan duration. We adapted the UK Biobank brain MRI protocol to produce high-quality images while being suitable as part of a post-COVID-19 multiorgan MRI exam. The analysis pipeline, also adapted from UK Biobank, includes new imaging-derived phenotypes (IDPs) designed to assess the possible effects of COVID-19. A first application of the protocol and pipeline was performed in 51 COVID-19 patients post-hospital discharge and 25 controls participating in the Oxford C-MORE study. The protocol acquires high resolution T1, T2-FLAIR, diffusion weighted images, susceptibility weighted images, and arterial spin labelling data in 17 min. The automated imaging pipeline derives 1,575 IDPs, assessing brain anatomy (including olfactory bulb volume and intensity) and tissue perfusion, hyperintensities, diffusivity, and susceptibility. In the C-MORE data, IDPs related to atrophy, small vessel disease and olfactory bulbs were consistent with clinical radiology reports. Our exploratory analysis tentatively revealed some group differences between recovered COVID-19 patients and controls, across severity groups, but not across anosmia groups. Follow-up imaging in the C-MORE study is currently ongoing, and this protocol is now being used in other large-scale studies. The protocol, pipeline code and data are openly available and will further contribute to the understanding of the medium to long-term effects of COVID-19.

12.
EClinicalMedicine ; 41: 101159, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34693230

RESUMO

BACKGROUND: The longitudinal trajectories of cardiopulmonary abnormalities and symptoms following infection with coronavirus disease (COVID-19) are unclear. We sought to describe their natural history in previously hospitalised patients, compare this with controls, and assess the relationship between symptoms and cardiopulmonary impairment at 6 months post-COVID-19. METHODS: Fifty-eight patients and thirty matched controls (single visit), recruited between 14th March - 25th May 2020, underwent symptom-questionnaires, cardiac and lung magnetic resonance imaging (CMR), cardiopulmonary exercise test (CPET), and spirometry at 3 months following COVID-19. Of them, forty-six patients returned for follow-up assessments at 6 months. FINDINGS: At 2-3 months, 83% of patients had at least one cardiopulmonary symptom versus 33% of controls. Patients and controls had comparable biventricular volumes and function. Native cardiac T1 (marker of fibroinflammation) and late gadolinium enhancement (LGE, marker of focal fibrosis) were increased in patients at 2-3 months. Sixty percent of patients had lung parenchymal abnormalities on CMR and 55% had reduced peak oxygen consumption (pV̇O2) on CPET. By 6 months, 52% of patients remained symptomatic. On CMR, indexed right ventricular (RV) end-diastolic volume (-4·3 mls/m2, P=0·005) decreased and RV ejection fraction (+3·2%, P=0·0003) increased. Native T1 and LGE improved and was comparable to controls. Lung parenchymal abnormalities and peak V̇O2, although better, were abnormal in patients versus controls. 31% had reduced pV̇O2 secondary to symptomatic limitation and muscular impairment. Cardiopulmonary symptoms in patients did not associate with CMR, lung function, or CPET measures. INTERPRETATION: In patients, cardiopulmonary abnormalities improve over time, though some measures remain abnormal relative to controls. Persistent symptoms at 6 months post-COVID-19 did not associate with objective measures of cardiopulmonary health. FUNDING: The authors' work was supported by the NIHR Oxford Biomedical Research Centre, Oxford British Heart Foundation (BHF) Centre of Research Excellence (RE/18/3/34214), United Kingdom Research Innovation and Wellcome Trust. This project is part of a tier 3 study (C-MORE) within the collaborative research programme entitled PHOSP-COVID Post-hospitalization COVID-19 study: a national consortium to understand and improve long-term health outcomes, funded by the Medical Research Council and Department of Health and Social Care/National Institute for Health Research Grant (MR/V027859/1) ISRCTN number 10980107.

13.
NMR Biomed ; 34(7): e4530, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951228

RESUMO

T1 mapping is a useful tool for the assessment of patients with nonalcoholic fatty liver disease but still suffers from a large unexplained variance in healthy subjects. This study aims to characterize the potential effects of liver glycogen concentration and body hydration status on liver shortened modified Look-Locker inversion recovery (shMOLLI) T1 measurements. Eleven glycogen phantoms and 12 healthy volunteers (mean age: 31 years, three females) were scanned at 3 T using inversion recovery spin echo, multiple contrast spin echo (in phantoms), shMOLLI T1 mapping, multiple-echo spoiled gradient recalled echo and 13 C spectroscopy (in healthy volunteers). Phantom r1 and r2 relaxivities were determined from measured T1 and T2 values. Participants underwent a series of five metabolic experiments to vary their glycogen concentration and hydration levels: feeding, food fasting, exercising, underhydration, and rehydration. Descriptive statistics were calculated for shMOLLI T1 , inferior vena cava to aorta cross-sectional area ratio (IVC/Ao) as a marker of body hydration status, glycogen concentration, T2 * and proton density fat fraction values. A linear mixed model for shMOLLI R1 was constructed to determine the effects of glycogen concentration and IVC/Ao ratio. The mean shMOLLI T1 after fasting was 737 ± 67 ms. The mean within-subject change was 80 ± 45 ms. The linear mixed model revealed a glycogen r1 relaxivity in volunteers (0.18 M-1 s-1 , p = 0.03) close to that determined in phantoms (0.28 M-1 s-1 ). A unit change in IVC/Ao ratio was associated with a drop of -0.113 s-1 in R1 (p < 0.001). This study demonstrated a dependence of liver shMOLLI T1 values on liver glycogen concentration and overall body hydration status. Interparticipant variation of hydration status should be minimized in future liver MRI studies. Additionally, caution is advised when interpreting liver T1 measurements in participants with excess liver glycogen.


Assuntos
Glicogênio/metabolismo , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Água/química , Adulto , Simulação por Computador , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Fatores de Tempo , Adulto Jovem
14.
EClinicalMedicine ; 31: 100683, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490928

RESUMO

BACKGROUND: The medium-term effects of Coronavirus disease (COVID-19) on organ health, exercise capacity, cognition, quality of life and mental health are poorly understood. METHODS: Fifty-eight COVID-19 patients post-hospital discharge and 30 age, sex, body mass index comorbidity-matched controls were enrolled for multiorgan (brain, lungs, heart, liver and kidneys) magnetic resonance imaging (MRI), spirometry, six-minute walk test, cardiopulmonary exercise test (CPET), quality of life, cognitive and mental health assessments. FINDINGS: At 2-3 months from disease-onset, 64% of patients experienced breathlessness and 55% reported fatigue. On MRI, abnormalities were seen in lungs (60%), heart (26%), liver (10%) and kidneys (29%). Patients exhibited changes in the thalamus, posterior thalamic radiations and sagittal stratum on brain MRI and demonstrated impaired cognitive performance, specifically in the executive and visuospatial domains. Exercise tolerance (maximal oxygen consumption and ventilatory efficiency on CPET) and six-minute walk distance were significantly reduced. The extent of extra-pulmonary MRI abnormalities and exercise intolerance correlated with serum markers of inflammation and acute illness severity. Patients had a higher burden of self-reported symptoms of depression and experienced significant impairment in all domains of quality of life compared to controls (p<0.0001 to 0.044). INTERPRETATION: A significant proportion of patients discharged from hospital reported symptoms of breathlessness, fatigue, depression and had limited exercise capacity. Persistent lung and extra-pulmonary organ MRI findings are common in patients and linked to inflammation and severity of acute illness. FUNDING: NIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation.

16.
Magn Reson Med ; 85(3): 1147-1159, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929770

RESUMO

PURPOSE: Phosphorus spectroscopy (31 P-MRS) is a proven method to probe cardiac energetics. Studies typically report the phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. We focus on another 31 P signal: inorganic phosphate (Pi), whose chemical shift allows computation of myocardial pH, with Pi/PCr providing additional insight into cardiac energetics. Pi is often obscured by signals from blood 2,3-diphosphoglycerate (2,3-DPG). We introduce a method to quantify Pi in 14 min without hindrance from 2,3-DPG. METHODS: Using a 31 P stimulated echo acquisition mode (STEAM) sequence at 7 Tesla that inherently suppresses signal from 2,3-DPG, the Pi peak was cleanly resolved. Resting state UTE-chemical shift imaging (PCr/ATP) and STEAM 31 P-MRS (Pi/PCr, pH) were undertaken in 23 healthy controls; pH and Pi/PCr were subsequently recorded during dobutamine infusion. RESULTS: We achieved a clean Pi signal both at rest and stress with good 2,3-DPG suppression. Repeatability coefficient (8 subjects) for Pi/PCr was 0.036 and 0.12 for pH. We report myocardial Pi/PCr and pH at rest and during catecholamine stress in healthy controls. Pi/PCr was maintained during stress (0.098 ± 0.031 [rest] vs. 0.098 ± 0.031 [stress] P = .95); similarly, pH did not change (7.09 ± 0.07 [rest] vs. 7.08 ± 0.11 [stress] P = .81). Feasibility for patient studies was subsequently successfully demonstrated in a patient with cardiomyopathy. CONCLUSION: We introduced a method that can resolve Pi using 7 Tesla STEAM 31 P-MRS. We demonstrate the stability of Pi/PCr and myocardial pH in volunteers at rest and during catecholamine stress. This protocol is feasible in patients and potentially of use for studying pathological myocardial energetics.


Assuntos
Dobutamina , Miocárdio , Trifosfato de Adenosina , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Fosfatos , Fosfocreatina
17.
Abdom Radiol (NY) ; 46(5): 1947-1957, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33247768

RESUMO

PURPOSE: Direct-acting antiviral therapies (DAAs) for treatment of chronic hepatitis C virus (HCV) have excellent rates of viral eradication, but their effect on regression of liver fibrosis is unclear. The primary aim was to use magnetic resonance imaging (MRI) and spectroscopy (MRS) to evaluate changes in liver fibrosis, liver fat and liver iron content (LIC) in patients with chronic HCV following treatment with DAAs. METHODS: In this prospective study, 15 patients with chronic HCV due to start treatment with DAAs and with transient elastography (TE) > 8 kPa were recruited consecutively. Patients underwent MRI and MRS at baseline (before treatment), and at 24 weeks and 48 weeks after the end of treatment (EoT) for the measurement of liver cT1 (fibroinflammation), liver fat and T2* (LIC). RESULTS: All patients achieved a sustained virological response. Liver cT1 showed significant decreases from baseline to 24 weeks post EoT (876 vs 806 ms, p = 0.002, n = 15), baseline to 48 weeks post EoT (876 vs 788 ms, p = 0.0002, n = 13) and 24 weeks post EoT to 48 weeks post EoT (806 vs 788 ms, p = 0.016, n = 13). Between baseline and 48 weeks EoT significant reduction in liver fat (5.17% vs 2.65%, p = 0.027) and an increase in reported LIC (0.913 vs 0.950 mg/g, p = 0.021) was observed. CONCLUSION: Liver cT1 decreases in patients with chronic HCV undergoing successful DAA treatment. The relatively fast reduction in cT1 suggests a reduction in inflammation rather than regression of fibrosis.


Assuntos
Antivirais , Hepatite C Crônica , Antivirais/uso terapêutico , Hepatite C Crônica/diagnóstico por imagem , Hepatite C Crônica/tratamento farmacológico , Humanos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/tratamento farmacológico , Estudos Prospectivos , Resposta Viral Sustentada
18.
Liver Int ; 40(12): 3071-3082, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32730664

RESUMO

BACKGROUND & AIMS: Liver cT1 , liver T1 , transient elastography (TE) and blood-based biomarkers have independently been shown to predict clinical outcomes but have not been directly compared in a single cohort of patients. Our aim was to compare these tests' prognostic value in a cohort of patients with compensated chronic liver disease. METHODS: Patients with unselected compensated liver disease aetiologies had baseline assessments and were followed up for development of clinical outcomes, blinded to the imaging results. The prognostic value of non-invasive liver tests at prespecified thresholds was assessed for a combined clinical endpoint comprising ascites, variceal bleeding, hepatic encephalopathy, hepatocellular carcinoma, liver transplantation and mortality. RESULTS: One hundred and ninety-seven patients (61% male) with median age of 54 years were followed up for 693 patient-years (median (IQR) 43 (26-58) months). The main diagnoses were NAFLD (41%), viral hepatitis (VH, 25%) and alcohol-related liver disease (ArLD; 14%). During follow-up 14 new clinical events, and 11 deaths occurred. Clinical outcomes were predicted by liver cT1  > 825ms with HR 9.9 (95% CI: 1.29-76.4, P = .007), TE > 8kPa with HR 7.8 (95% CI: 0.97-62.3, P = .02) and FIB-4 > 1.45 with HR 4.09 (95% CI: 0.90-18.4, P = .05). In analysis taking into account technical failure and unreliability, liver cT1  > 825 ms could predict clinical outcomes (P = .03), but TE > 8kPa could not (P = .4). CONCLUSIONS: We provide further evidence that liver cT1 , TE and serum-based biomarkers can predict clinical outcomes, but when taking into account technical failure/unreliability, TE cut-offs perform worse than those of cT1 and blood biomarkers.


Assuntos
Técnicas de Imagem por Elasticidade , Varizes Esofágicas e Gástricas , Neoplasias Hepáticas , Imageamento por Ressonância Magnética Multiparamétrica , Biomarcadores , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/patologia , Feminino , Hemorragia Gastrointestinal/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prognóstico
20.
J Am Coll Cardiol ; 73(20): 2493-2502, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31118142

RESUMO

BACKGROUND: Myocardial disarray is a likely focus for fatal arrhythmia in hypertrophic cardiomyopathy (HCM). This microstructural abnormality can be inferred by mapping the preferential diffusion of water along cardiac muscle fibers using diffusion tensor cardiac magnetic resonance (DT-CMR) imaging. Fractional anisotropy (FA) quantifies directionality of diffusion in 3 dimensions. The authors hypothesized that FA would be reduced in HCM due to disarray and fibrosis that may represent the anatomic substrate for ventricular arrhythmia. OBJECTIVES: This study sought to assess FA as a noninvasive in vivo biomarker of HCM myoarchitecture and its association with ventricular arrhythmia. METHODS: A total of 50 HCM patients (47 ± 15 years of age, 77% male) and 30 healthy control subjects (46 ± 16 years of age, 70% male) underwent DT-CMR in diastole, cine, late gadolinium enhancement (LGE), and extracellular volume (ECV) imaging at 3-T. RESULTS: Diastolic FA was reduced in HCM compared with control subjects (0.49 ± 0.05 vs. 0.52 ± 0.03; p = 0.0005). Control subjects had a mid-wall ring of high FA. In HCM, this ring was disrupted by reduced FA, consistent with published histology demonstrating that disarray and fibrosis invade circumferentially aligned mid-wall myocytes. LGE and ECV were significant predictors of FA, in line with fibrosis contributing to low FA. Yet FA adjusted for LGE and ECV remained reduced in HCM (p = 0.028). FA in the hypertrophied segment was reduced in HCM patients with ventricular arrhythmia compared to patients without (n = 15; 0.41 ± 0.03 vs. 0.46 ± 0.06; p = 0.007). A decrease in FA of 0.05 increased odds of ventricular arrhythmia by 2.5 (95% confidence interval: 1.2 to 5.3; p = 0.015) in HCM and remained significant even after correcting for LGE, ECV, and wall thickness (p = 0.036). CONCLUSIONS: DT-CMR assessment of left ventricular myoarchitecture matched patterns reported previously on histology. Low diastolic FA in HCM was associated with ventricular arrhythmia and is likely to represent disarray after accounting for fibrosis. The authors propose that diastolic FA could be the first in vivo marker of disarray in HCM and a potential independent risk factor.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Ventrículos do Coração/fisiopatologia , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , Taquicardia Ventricular/diagnóstico , Função Ventricular Esquerda/fisiologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/fisiopatologia , Diástole , Eletrocardiografia Ambulatorial , Feminino , Seguimentos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA